Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2023_33_1_a3, author = {Duda, Jaros{\l}aw and Niemiec, Marcin}, title = {Lightweight compression with encryption based on asymmetric numeral systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {45--55}, publisher = {mathdoc}, volume = {33}, number = {1}, year = {2023}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/IJAMCS_2023_33_1_a3/} }
TY - JOUR AU - Duda, Jarosław AU - Niemiec, Marcin TI - Lightweight compression with encryption based on asymmetric numeral systems JO - International Journal of Applied Mathematics and Computer Science PY - 2023 SP - 45 EP - 55 VL - 33 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/IJAMCS_2023_33_1_a3/ LA - en ID - IJAMCS_2023_33_1_a3 ER -
%0 Journal Article %A Duda, Jarosław %A Niemiec, Marcin %T Lightweight compression with encryption based on asymmetric numeral systems %J International Journal of Applied Mathematics and Computer Science %D 2023 %P 45-55 %V 33 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/IJAMCS_2023_33_1_a3/ %G en %F IJAMCS_2023_33_1_a3
Duda, Jarosław; Niemiec, Marcin. Lightweight compression with encryption based on asymmetric numeral systems. International Journal of Applied Mathematics and Computer Science, Tome 33 (2023) no. 1, pp. 45-55. https://geodesic-test.mathdoc.fr/item/IJAMCS_2023_33_1_a3/
[1] [1] Alakuijala, J., Van Asseldonk, R., Boukortt, S., Bruse, M., Coms, a, I.-M., Firsching, M., Fischbacher, T., Kliuchnikov, E., Gomez, S., Obryk, R. et al. (2019). JPEG XL next-generation image compression architecture and coding tools, Applications of Digital Image Processing XLII, San Diego, USA, pp. 112-124.
[2] [2] ALC (2017). Apple LZFSE compressor, https://github. com/lzfse/lzfse.
[3] [3] Baptista, M. (1998). Cryptography with chaos, Physics Letters A 240(1): 50-54.
[4] [4] Bassham, L., Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Leigh, S., Levenson, M., Vangel, M., Heckert, N. and Banks, D. (2010). A statistical test suite for random and pseudorandom number generators for cryptographic applications, NIST SP 800-22 Rev 1a, National Institute of Standards and Technology, Gaithersburg, https://www .nist.gov/publications/statistical-tes t-suite-random-and-pseudorandom-number-generators-cryptographic.
[5] [5] Buzidi, H. (2014). LzTurbo compressor, https://sites.g oogle.com/site/powturbo/.
[6] [6] Camtepe, S., Duda, J., Mahboubi, A., Morawiecki, P., Nepal, S., Pawłowski, M. and Pieprzyk, J. (2021). CompCrypt-lightweight ANS-based compression and encryption, IEEE Transactions on Information Forensics and Security 16: 3859-3873.
[7] [7] Cole, P.H. and Ranasinghe, D.C. (2008). Networked RFID Systems and Lightweight Cryptography, Springer, London.
[8] [8] Collet, Y. (2013a). New generation entropy codecs: Finite state entropy and Huff 0, https://github.com/Cyan49 73/FiniteStateEntropy.
[9] [9] Collet, Y. (2013b). Zhuff compressor, http://fastcompre ssion.blogspot.com/p/zhuff.html.
[10] [10] Duda, J. (2009). Asymmetric numerical systems, arXiv: 0902.0271.
[11] [11] Duda, J. (2014a). ANS toolkit, https://github.com/Jar ekDuda/AsymmetricNumeralSystemsToolkit.
[12] [12] Duda, J. (2014b). Asymmetric numeral systems: Entropy coding combining speed of Huffman coding with compression rate of arithmetic coding, arXiv: 1311.2540.
[13] [13] Duda, J., Tahboub, K., Gadgil, N.J. and Delp, E.J. (2015). The use of asymmetric numeral systems as an accurate replacement for Huffman coding, 31st Picture Coding Symposium, Cairns, Australia, pp. 65-69.
[14] [14] Eisenbarth, T., Kumar, S., Paar, C., Poschmann, A. and Uhsadel, L. (2007). A survey of lightweight-cryptography implementations, IEEE Design Test of Computers 24(6): 522-533.
[15] [15] El-Douh, A.A.-R., Lu, S.F., Elkouny, A.A. and Amein, A.S. (2022). Hybrid cryptography with a one-time stamp to secure contact tracing for COVID-19 infection, International Journal of Applied Mathematics and Computer Science 32(1): 139-146, DOI: 10.34768/amcs-2022-0011.
[16] [16] FZC (2016). Facebook Zstandard compressor, https://git hub.com/facebook/zstd.
[17] [17] Francesco, N. (2014). LZA compressor, http://heartofc omp.altervista.org/.
[18] [18] Giesen, F. (2014). Simple rAns encoder/decoder, https://g ithub.com/rygorous/ryg_rans.
[19] [19] Gillman, D.W., Mohtashemi, M. and Rivest, R.L. (1996). On breaking a Huffman code, IEEE Transactions on Information Theory 42(3): 972-976.
[20] [20] Huang, Z., Liu, S., Qin, B. and Chen, K. (2015). Sender-equivocable encryption schemes secure against chosen-ciphertext attacks revisited, International Journal of Applied Mathematics and Computer Science 25(2): 415-430, DOI: 10.1515/amcs-2015-0032.
[21] [21] Huffman, D. (1952). A method for the construction of minimum redundancy codes, Proceedings of the IRE 40(9): 1098-1101.
[22] [22] Jakimoski, G. and Kocarev, L. (2001). Chaos and cryptography: Block encryption ciphers based on chaotic maps, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 48(2): 163-169.
[23] [23] Kelley, J. and Tamassia, R. (2014). Secure compression: Theory practice, Cryptology ePrint Archive, Report 2014/113, https://eprint.iacr.org/2014/113.
[24] [24] Kim, H., Wen, J. and Villasenor, J.D. (2007). Secure arithmetic coding, IEEE Transactions on Signal Processing 55(5): 2263-2272.
[25] [25] Külekci, M.O. (2012). On scrambling the Burrows-Wheeler transform to provide privacy in lossless compression, Computers Security 31(1): 26-32.
[26] [26] Mahboubi, A., Ansari, K., Camtepe, S., Duda, J., Morawiecki, P., Pawłowski, M. and Pieprzyk, J. (2022). Digital immunity module: Preventing unwanted encryption using source coding, TechRxiv, (preprint).
[27] [27] Marpe, D., Schwarz, H. and Wiegand, T. (2003). Context-based adaptive binary arithmetic coding in the H.264/AVC video compression standard, IEEE Transactions on Circuits and Systems for Video Technology 13(7): 620-636.
[28] [28] Martin, G. (1979). Range encoding: An algorithm for removing redundancy from a digitized message, Institution of Electronic and Radio Engineers International Conference on Video and Data Recording, Southampton, UK.
[29] [29] Najmabadi, S.M., Wang, Z., Baroud, Y. and Simon, S. (2015). High throughput hardware architectures for asymmetric numeral systems entropy coding, 9th IEEE International Symposium on Image and Signal Processing and Analysis (ISPA), Zagreb, Croatia, pp. 256-259.
[30] [30] Pieprzyk, J., Pawlowski, M., Morawiecki, P., Mahboubi, A., Duda, J. and Camtepe, S. (2022). Pseudorandom bit generation with asymmetric numeral systems, Cryptology ePrint Archive, Report 2022/005, https://ia.cr/20 22/005.
[31] [31] Poschmann, A.Y. (2009). Lightweight cryptography: Cryptographic engineering for a pervasive world, Cryptology ePrint Archive, Paper 2009/516, https://e print.iacr.org/2009/516.
[32] [32] Rissanen, J.J. (1976). Generalized Kraft inequality and arithmetic coding, IBM Journal of Research and Development 20(3): 198-203.
[33] [33] Tseng, K.-K., Jiang, J.M., Pan, J.-S., Tang, L.L., Hsu, C.-Y. and Chen, C.-C. (2012). Enhanced Huffman coding with encryption for wireless data broadcasting system, IEEE International Symposium on Computer, Consumer and Control (IS3C), Taichung, Taiwan, pp. 622-625.
[34] [34] Witten, I.H. and Cleary, J.G. (1988). On the privacy afforded by adaptive text compression, Computers Security 7(4): 397-408.
[35] [35] Xie, D. and Kuo, C.-C. (2005). Secure Lempel-Ziv compression with embedded encryption, Electronic Imaging 2005, San Jose, USA pp. 318–327, DOI: 10.1117/12.590665.