Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2021_31_4_a13, author = {Sienkowski, Sergiusz and Krajewski, Mariusz}, title = {On the statistical analysis of the harmonic signal autocorrelation function}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {729--744}, publisher = {mathdoc}, volume = {31}, number = {4}, year = {2021}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/IJAMCS_2021_31_4_a13/} }
TY - JOUR AU - Sienkowski, Sergiusz AU - Krajewski, Mariusz TI - On the statistical analysis of the harmonic signal autocorrelation function JO - International Journal of Applied Mathematics and Computer Science PY - 2021 SP - 729 EP - 744 VL - 31 IS - 4 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/IJAMCS_2021_31_4_a13/ LA - en ID - IJAMCS_2021_31_4_a13 ER -
%0 Journal Article %A Sienkowski, Sergiusz %A Krajewski, Mariusz %T On the statistical analysis of the harmonic signal autocorrelation function %J International Journal of Applied Mathematics and Computer Science %D 2021 %P 729-744 %V 31 %N 4 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/IJAMCS_2021_31_4_a13/ %G en %F IJAMCS_2021_31_4_a13
Sienkowski, Sergiusz; Krajewski, Mariusz. On the statistical analysis of the harmonic signal autocorrelation function. International Journal of Applied Mathematics and Computer Science, Tome 31 (2021) no. 4, pp. 729-744. https://geodesic-test.mathdoc.fr/item/IJAMCS_2021_31_4_a13/
[1] [1] Akkucuk, U. (2019). Handbook of Research on Creating Sustainable Value in the Global Economy, IGI Global, Hershey.
[2] [2] Al-Qudsi, B., El-Shennawy, M., Joram, N. and Ellinger, F. (2017). Enhanced zero crossing frequency estimation for FMCW radar systems, Proceedings of the 13th Conference on PhD Research in Microelectronics and Electronics (PRIME), Taormina, Italy, pp. 53–56.
[3] [3] Beck, M.S. and Plaskowski, A. (1987). Cross Correlation Flowmeters, Their Design and Application, Adam Hilger, Bristol.
[4] [4] Bendat, J.S. and Piersol, A.G. (2010). Random Data: Analysis and Measurement Procedures, 4th Edition, Wiley, Hoboken.
[5] [5] Box, G.E.P., Jenkins, G. and Reinsel, G. (2008). Time Series Analysis: Forecasting and Control, 4th Edition, Wiley, Hoboken.
[6] [6] Broersen, P.M.T. (2006). Automatic Autocorrelation and Spectral Analysis, Springer-Verlag, London.
[7] [7] Cao, Y., Wei, G. and Chen, F.-J. (2012). An exact analysis of modified covariance frequency estimation algorithm based on correlation of single-tone, Signal Processing 92(11): 2785–2790.
[8] [8] Chen, W.-K. (2004). The Electrical Engineering Handbook, Academic Press, Amsterdam.
[9] [9] De Gooijer, J.G. and Anderson, O.D. (1985). Moments of the sampled space-time autocovariance and autocorrelation function, Biometrika 72(3): 689–693.
[10] [10] Elasmi-Ksibi, R., Besbes, H., López-Valcarce, R. and Cherif, S. (2010). Frequency estimation of real-valued single-tone in colored noise using multiple autocorrelation lags, Signal Processing 90(7): 2303–2307.
[11] [11] Grzegorzewski, P., Hryniewicz, O. and Romaniuk, M. (2020). Flexible resampling for fuzzy data, International Journal of Applied Mathematics and Computer Science 30(2): 281–297, DOI: 10.34768/amcs-2020-0022.
[12] [12] Hague, D.A. and Buck, J.R. (2019). An experimental evaluation of the generalized sinusoidal frequency modulated waveform for active sonar systems, Journal of the Acoustical Society of America 145(6): 3741–3755.
[13] [13] Hanus, R. (2019). Time delay estimation of random signals using cross-correlation with Hilbert transform, Measurement 146: 792–799.
[14] [14] Hołyst, R., Poniewierski, A. and Zhang, X. (2017). Analytical form of the autocorrelation function for the fluorescence correlation spectroscopy, Soft Matter 13(6): 1267–1275.
[15] [15] Hussein, H.M., Terra, O., Hussein, H. and Medhat, M. (2020). Collinear versus non-collinear autocorrelation between femtosecond pulses for absolute distance measurement, Measurement 152: 107319.
[16] [16] Iqbal, S., Zang, X., Zhu, Y., Saad, H.M.A.A. and Zhao, J. (2015). Nonlinear time-series analysis of different human walking gaits, Proceedings of the 2015 IEEE International Conference on Electro/Information Technology, DeKalb, USA, pp. 25–30.
[17] [17] JCGM (2008). Evaluation of measurement data. guide to the expression of uncertainty in measurement, Technical Report 100, Joint Committee for Guides in Metrology, Sévres.
[18] [18] Kalvani, P.R., Jahangiri, A.R., Shapouri, S., Sari, A. and Jalili, Y.S. (2019). Multimode AFManalysis of aluminum-doped zinc oxide thin films sputtered under various substrate temperatures for optoelectronic applications, Radio Science 132: 106173.
[19] [19] Kogan, L. (1998). Correction functions for digital correlators with two and four quantization levels, Superlattices and Microstructures 33(5): 1289–1296.
[20] [20] Kowalczyk, A., Hanus, R. and Szlachta, A. (2016). Time delay measurement method using conditional averaging of the delayed signal module, Przegląd Elektrotechniczny 92(9): 279–282.
[21] [21] Krajewski, M. (2018). Constructing an uncertainty budget for voltage rms measurement with a sampling voltmeter, Metrologia 55(1): 95–105.
[22] [22] Lal-Jadziak, J. and Sienkowski, S. (2008). Models of bias of mean square value digital estimator for selected deterministic and random signals, Metrology and Measurement Systems 15(1): 55–67.
[23] [23] Lal-Jadziak, J. and Sienkowski, S. (2009). Variance of random signal mean square value digital estimator, Metrology and Measurement Systems 16(2): 267–277.
[24] [24] Martinez, M.A. and Ashrafi, A. (2018). Real-valued single-tone frequency estimation using half-length autocorrelation, Digital Signal Processing 83: 98–106.
[25] [25] Menhaj, A., Assaad, J., Rouvaen, J.M., Heddebaut, M. and Bruneel, C. (1998). A new collision avoidance radar system using correlation receiver and compressed pulses, Measurement Science and Technology 9(2): 283–286.
[26] [26] Nielsen, E. and Rietveld, M.T. (2003). Observations of backscatter autocorrelation functions from 1.07-m ionospheric irregularities generated by the European incoherent scatter heater facility, Journal of Geophysical Research: Space Physics 108(A5): 1166.
[27] [27] Peng, J. and Boscolo, S. (2016). Filter-based dispersion-managed versatile ultrafast fibre laser, Scientific Reports 6: 25995.
[28] [28] Pfeifer, P.E. and Deutsch, S.J. (1981). Variance of the sample space-time autocorrelation function, Journal of the Royal Statistical Society B 43(1): 28–33.
[29] [29] Rahman, M.M., Chowdhury, M.A. and Fattah, S.A. (2018). An efficient scheme for mental task classification utilizing reflection coefficients obtained from autocorrelation function of EEG signal, Brain Informatics 5: 1–12.
[30] [30] Rice, F., Cowley, B., Moran, B. and Rice, M. (2001). Cramer-Rao lower bounds for QAM phase and frequency estimation, IEEE Transactions on Communications 49(9): 1582–1591.
[31] [31] Roberts, P.P. (1997). Calculating quantization correction formulae for digital correlators with digital fringe rotation, Astronomy and Astrophysics Supplement Series 126(2): 379–383.
[32] [32] Sienkowski, S. and Kawecka, E. (2013). Probabilistic properties of sinusoidal signal autocorrelation function, Przegląd Elektrotechniczny 89(11): 98–100.
[33] [33] Sienkowski, S. and Krajewski, M. (2018). Simple, fast and accurate four-point estimators of sinusoidal signal frequency, Metrology and Measurement Systems 25(2): 359–376.
[34] [34] Sienkowski, S. and Krajewski, M. (2020). Single-tone frequency estimation based on reformed covariance for half-length autocorrelation, Metrology and Measurement Systems 27(3): 473–493.
[35] [35] Spiesberger, J.L. (1996). Identifying cross-correlation peaks due to multipaths with application to optimal passive localization of transient signals and tomographic mapping of the environment, Journal of the Acoustical Society of America 100(2): 910–918.
[36] [36] Stodółka, J., Korzewa, L., Stodółka, W. and Gambal, J. (2017). The applicability of using parameters of the autocorrelation function in the assessment of human balance during quiet bipedal stance, Central European Journal of Sport Sciences and Medicine 17(1): 79–87.
[37] [37] Tagade, P.M. and Choi, H.-L. (2017). A dynamic bi-orthogonal field equation approach to efficient Bayesian inversion, International Journal of Applied Mathematics and Computer Science 27(2): 229–243, DOI: 10.1515/amcs-2017-0016.
[38] [38] Toth, L. and Kocsor, A. (2003). Harmonic alternatives to sine-wave speech, Proceedings of the 8th European Conference on Speech Communication and Technology, Geneva, Switzerland, pp. 2073–2076.
[39] [39] Tu, Y.-Q. and Shen, Y.-L. (2017). Phase correction autocorrelation-based frequency estimation method for sinusoidal signal, Signal Processing 130: 183–189.
[40] [40] Uciński, D. (2000). Optimal selection of measurement locations for parameter estimation in distributed processes, International Journal of Applied Mathematics and Computer Science 10(2): 357–379.
[41] [41] Vaseghi, S.V. (2008). Advanced Digital Signal Processing and Noise Reduction, 4th Edition, Wiley, Hoboken.
[42] [42] Wang, K., Ding, J., Xia, Y., Liu, X., Hao, J. and Pei, W. (2018). Two high accuracy frequency estimation algorithms based on new autocorrelation-like function for noncircular/sinusoid signal, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences 101(7): 1065–1073.
[43] [43] Weber, R., Faye, C., Biraud, F. and Dansou, J. (1997). Spectral detector for interference time blanking using quantized correlator, Astronomy and Astrophysics Supplement Series 126(1): 161–167.
[44] [44] Zeitler, R. (1997). Digital correlator for measuring the velocity of solid surfaces, IEEE Transactions on Instrumentation and Measurement 46(4): 803–806.
[45] [45] Zhang, M., Yang, Q., Chen, X. and Zhang, A. (2018). A generalized correlation theorem for LTI systems, Journal of Physics: Conference Series 1169(1): 012018.