Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2021_31_3_a8, author = {L\'opez-Lobato, Adriana Laura and Avenda\~no-Garrido, Martha Lorena}, title = {Fitting a {Gaussian} mixture model through the {Gini} index}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {487--500}, publisher = {mathdoc}, volume = {31}, number = {3}, year = {2021}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/IJAMCS_2021_31_3_a8/} }
TY - JOUR AU - López-Lobato, Adriana Laura AU - Avendaño-Garrido, Martha Lorena TI - Fitting a Gaussian mixture model through the Gini index JO - International Journal of Applied Mathematics and Computer Science PY - 2021 SP - 487 EP - 500 VL - 31 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/IJAMCS_2021_31_3_a8/ LA - en ID - IJAMCS_2021_31_3_a8 ER -
%0 Journal Article %A López-Lobato, Adriana Laura %A Avendaño-Garrido, Martha Lorena %T Fitting a Gaussian mixture model through the Gini index %J International Journal of Applied Mathematics and Computer Science %D 2021 %P 487-500 %V 31 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/IJAMCS_2021_31_3_a8/ %G en %F IJAMCS_2021_31_3_a8
López-Lobato, Adriana Laura; Avendaño-Garrido, Martha Lorena. Fitting a Gaussian mixture model through the Gini index. International Journal of Applied Mathematics and Computer Science, Tome 31 (2021) no. 3, pp. 487-500. https://geodesic-test.mathdoc.fr/item/IJAMCS_2021_31_3_a8/
[1] [1] Bassetti, F., Bodini, A. and Regazzini, E. (2006). On minimum Kantorovich distance estimators, Statistics and Probability Letters 76(12): 1298–1302.
[2] [2] Bishop, C.M. (2006). Pattern Recognition and Machine Learning, Springer, New York.
[3] [3] Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977). Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society: Series B (Methodological) 39(1): 1–22.
[4] [4] Elkan, C. (1997). Boosting and naive Bayesian learning, Proceedings of the International Conference on Knowledge Discovery and Data Mining, Newport Beach, USA.
[5] [5] Flach, P.A. and Lachiche, N. (2004). Naive Bayesian classification of structured data, Machine Learning 57(3): 233–269.
[6] [6] Giorgi, G.M. and Gigliarano, C. (2017). The Gini concentration index: A review of the inference literature, Journal of Economic Surveys 31(4): 1130–1148.
[7] [7] Greenspan, H., Ruf, A. and Goldberger, J. (2006). Constrained Gaussian mixture model framework for automatic segmentation of MR brain images, IEEE Transactions on Medical Imaging 25(9): 1233–1245.
[8] [8] Kłopotek, R., Kłopotek, M. and Wierzchoń, S. (2020). A feasible k-means kernel trick under non-Euclidean feature space, International Journal of Applied Mathematics and Computer Science 30(4): 703–715, DOI: 10.34768/amcs-2020-0052.
[9] [9] Kulczycki, P. (2018). Kernel estimators for data analysis, in M. Ram and J.P. Davim (Eds), Advanced Mathematical Techniques in Engineering Sciences, CRC/Taylor Francis, Boca Raton, pp. 177–202.
[10] [10] López-Lobato, A.L. and Avendaño-Garrido, M.L. (2020). Using the Gini index for a Gaussian mixture model, in L. Martínez-Villaseñor et al. (Eds), Advances in Computational Intelligence. MICAI 2020, Lecture Notes in Computer Science, Vol. 12469, Springer, Cham, pp. 403–418.
[11] [11] Mao, C., Lu, L. and Hu, B. (2020). Local probabilistic model for Bayesian classification: A generalized local classification model, Applied Soft Computing 93: 106379.
[12] [12] Meng, X.-L. and Rubin, D.B. (1994). On the global and componentwise rates of convergence of the EM algorithm, Linear Algebra and its Applications 199(Supp. 1): 413–425.
[13] [13] Povey, D., Burget, L., Agarwal, M., Akyazi, P., Kai, F., Ghoshal, A., Glembek, O., Goel, N., Karafiát, M., Rastrow, A., Rose, R., Schwarz, P. and Thomas, S. (2011). The subspace Gaussian mixture model: A structured model for speech recognition, Computer Speech Language 25(2): 404–439.
[14] [14] Rachev, S., Klebanov, L., Stoyanov, S. and Fabozzi, F. (2013). The Methods of Distances in the Theory of Probability and Statistics, Springer, New York, pp. 659–663.
[15] [15] Reynolds, D.A. (2009). Gaussian mixture models, in S.Z. Li (Ed.), Encyclopedia of Biometrics, Springer, New York, pp. 659–663.
[16] [16] Rubner, Y., Tomasi, C. and Guibas, L.J. (2000). The Earth mover’s distance as a metric for image retrieval, International Journal of Computer Vision 40(2): 99–121.
[17] [17] Singh, R., Pal, B.C. and Jabr, R.A. (2009). Statistical representation of distribution system loads using Gaussian mixture model, IEEE Transactions on Power Systems 25(1): 29–37.
[18] [18] Torres-Carrasquillo, P.A., Reynolds, D.A. and Deller, J.R. (2002). Language identification using Gaussian mixture model tokenization, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing, Orlando, USA, pp. 1–757.
[19] [19] Ultsch, A. and Lötsch, J. (2017). A data science based standardized Gini index as a Lorenz dominance preserving measure of the inequality of distributions, PloS One 12(8): e0181572.
[20] [20] Vaida, F. (2005). Parameter convergence for EM and MM algorithms, Statistica Sinica 15(2005): 831–840.
[21] [21] Villani, C. (2003). Topics in Optimal Transportation, American Mathematical Society, Providence.
[22] [22] Xu, L. and Jordan, M.I. (1996). On convergence properties of the EM algorithm for Gaussian mixtures, Neural Computation 8(1): 129–151.