Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2020_30_4_a4, author = {Uci\'nski, Dariusz}, title = {Construction of constrained experimental designs on finite spaces for a modified {Ek-optimality} criterion}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {659--677}, publisher = {mathdoc}, volume = {30}, number = {4}, year = {2020}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/IJAMCS_2020_30_4_a4/} }
TY - JOUR AU - Uciński, Dariusz TI - Construction of constrained experimental designs on finite spaces for a modified Ek-optimality criterion JO - International Journal of Applied Mathematics and Computer Science PY - 2020 SP - 659 EP - 677 VL - 30 IS - 4 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/IJAMCS_2020_30_4_a4/ LA - en ID - IJAMCS_2020_30_4_a4 ER -
%0 Journal Article %A Uciński, Dariusz %T Construction of constrained experimental designs on finite spaces for a modified Ek-optimality criterion %J International Journal of Applied Mathematics and Computer Science %D 2020 %P 659-677 %V 30 %N 4 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/IJAMCS_2020_30_4_a4/ %G en %F IJAMCS_2020_30_4_a4
Uciński, Dariusz. Construction of constrained experimental designs on finite spaces for a modified Ek-optimality criterion. International Journal of Applied Mathematics and Computer Science, Tome 30 (2020) no. 4, pp. 659-677. https://geodesic-test.mathdoc.fr/item/IJAMCS_2020_30_4_a4/
[1] [1] Atkinson, A.C., Donev, A.N. and Tobias, R.D. (2007). Optimum Experimental Designs, with SAS, Oxford University Press, Oxford.
[2] [2] Beddiaf, S., Autrique, L., Perez, L. and Jolly, J.-C. (2016). Heating source localization in a reduced time, International Journal of Applied Mathematics and Computer Science 26(3): 623–640, DOI: 10.1515/amcs-2016-0043.
[3] [3] Bernstein, D.S. (2005). Matrix Mathematics. Theory, Facts, and Formulas with Application to Linear Systems Theory, Princeton University Press, Princeton, NJ.
[4] [4] Bertsekas, D.P. (1999). Nonlinear Programming, 2nd Edn, Optimization and Computation Series, Athena Scientific, Belmont, MA.
[5] [5] Bertsekas, D.P. (2015). Convex Optimization Algorithms, Athena Scientific, Belmont, MA.
[6] [6] Bertsekas, D. and Yu, H. (2011). A unifying polyhedral approximation framework for convex optimization, SIAM Journal on Optimization 21(1): 333–360.
[7] [7] Böhning, D. (1986). A vertex-exchange-method in D-optimal design theory, Metrika 33(12): 337–347.
[8] [8] Botkin, N.D. and Stoer, J. (2005). Minimization of convex functions on the convex hull of a point set, Mathematical Methods of Operations Research 62(2): 167–18.
[9] [9] Boyd, S. and Vandenberghe, L. (2004). Convex Optimization, Cambridge University Press, Cambridge.
[10] [10] Burclová, K. and Pázman, A. (2016). Optimal design of experiments via linear programming, Statistical Papers 57(4): 893–910.
[11] [11] Chepuri, S.P. and Leus, G. (2015). Sparsity-promoting sensor selection for non-linear measurement models, IEEE Transactions on Signal Processing 63(3): 684–698.
[12] [12] Coll, C. and Sánchez, E. (2019). Parameter identification and estimation for stage-structured population models, International Journal of Applied Mathematics and Computer Science 29(2): 327–336, DOI: 10.2478/amcs-2019-0024.
[13] [13] Cook, D. and Fedorov, V. (1995). Constrained optimization of experimental design, Statistics 26: 129–178.
[14] [14] Djelassi, H., Glass, M. and Mitsos, A. (2019). Discretization-based algorithms for generalized semi-infinite and bilevel programs with coupling equality constraints, Journal of Global Optimization 75(2): 341–392.
[15] [15] Duarte, B.P.M., Granjo, J.F.O. and Wong, W.K. (2020). Optimal exact designs of experiments via mixed integer nonlinear programming, Statistics and Computing 30(1): 93–112.
[16] [16] Duarte, B.P.M. and Wong, W.K. (2014). A semi-infinite programming based algorithm for finding minimax optimal designs for nonlinear models, Statistics and Computing 24(6): 1063–1080.
[17] [17] Esteban-Bravo, M., Leszkiewicz, A. and Vidal-Sanz, J.M. (2017). Exact optimal experimental designs with constraints, Statistics and Computing 27(3): 845–863.
[18] [18] Fedorov, V.V. (1989). Optimal design with bounded density: Optimization algorithms of the exchange type, Journal of Statistical Planning and Inference 22: 1–13.
[19] [19] Fedorov, V.V. and Leonov, S.L. (2014). Optimal Design for Nonlinear Response Models, CRC Press, Boca Raton, FL.
[20] [20] Harman, R. (2004). Minimal efficiency of designs under the class of orthogonally invariant information criteria, Metrika 60(2): 137–153.
[21] [21] Harman, R. and Benková, E. (2017). Barycentric algorithm for computing d-optimal size- and cost-constrained designs of experiments, Metrika 80(2): 201–225.
[22] [22] Harman, R., Filová, L. and Richtárik, P. (2020). A randomized exchange algorithm for computing optimal approximate designs of experiments, Journal of the American Statistical Association 115(529): 348–361.
[23] [23] Harman, R. and Pronzato, L. (2007). Improvements on removing nonoptimal support points in d-optimum design algorithms, Statistics Probability Letters 77(1): 90–94.
[24] [24] Harville, D.A. (1997). Matrix Algebra From a Statistician’s Perspective, Springer-Verlag, New York, NY.
[25] [25] Herzog, R., Riedel, I. and Uciński, D. (2018). Optimal sensor placement for joint parameter and state estimation problems in large-scale dynamical systems with applications to thermo-mechanics, Optimization and Engineering 19(3): 591–627.
[26] [26] Hettich, R. and Kortanek, K.O. (1993). Semi-infinite programming: Theory, methods and applications, SIAM Review 35(3): 380–429.
[27] [27] Jacobson, M.Z. (1999). Fundamentals of Atmospheric Modeling, Cambridge University Press, Cambridge.
[28] [28] Joshi, S. and Boyd, S. (2009). Sensor selection via convex optimization, IEEE Transactions on Signal Processing 57(2): 451–462.
[29] [29] Katoh, N. (2001). Combinatorial optimization algorithms in resource allocation problems, in C.A. Floudas and P.M. Pardalos (Eds), Encyclopedia of Optimization, Vol. 1, Kluwer Academic Publishers, Dordrecht, pp. 259–264.
[30] [30] Khapalov, A.Y. (2010). Source localization and sensor placement in environmental monitoring, International Journal of Applied Mathematics and Computer Science 20(3): 445–458, DOI: 10.2478/v10006-010-0033-3.
[31] [31] Langtangen, H.P. and Logg, A. (2016). Solving PDEs in Python. The FEniCS Tutorial I, Springer-Verlag, Cham.
[32] [32] Larsson, T., Migdalas, A. and Patriksson, M. (2015). A generic column generation principle: Derivation and convergence analysis, Operational Research 15(2): 163–198.
[33] [33] Larsson, T., Patriksson, M. and Strömberg, A. (1998). Ergodic convergence in subgradient optimization, Optimization Methods and Software 9(1–3): 93–120.
[34] [34] Lu, Z. and Pong, T.K. (2013). Computing optimal experimental designs via interior point method, SIAM Journal on Matrix Analysis and Applications 34(4): 1556–1580.
[35] [35] Maculan, N., Santiago, C.P., Macambira, E.M. and Jardim, M.H.C. (2003). An O(n) algorithm for projecting a vector on the intersection of a hyperplane and a box in Rn, Journal of Optimization Theory and Applications 117(3): 553–574.
[36] [36] Marshall, A.W., Olkin, I. and Arnold, B.C. (2011). Inequalities: Theory of Majorization and Its Applications, 2nd Edn, Springer-Verlag, New York, NY.
[37] [37] Melas, V. (2006). Functional Approach to Optimal Experimental Design, Springer-Verlag, New York, NY.
[38] [38] Patan, M. and Kowalów, D. (2018). Distributed scheduling of measurements in a sensor network for parameter estimation of spatio-temporal systems, International Journal of Applied Mathematics and Computer Science 28(1): 39–54, DOI: 10.2478/amcs-2018-0003.
[39] [39] Patan, M. and Uciński, D. (2008). Configuring a sensor network for fault detection in distributed parameter systems, International Journal of Applied Mathematics and Computer Science 18(4): 513–524, DOI: 10.2478/v10006-008-0045-4.
[40] [40] Patan, M. and Uciński, D. (2019). Generalized simplicial decomposition for optimal sensor selection in parameter estimation of spatiotemporal processes, 2019 American Control Conference (ACC), Philadelphia, PA, USA, pp. 2546–2551.
[41] [41] Patriksson, M. (2001). Simplicial decomposition algorithms, in C.A. Floudas and P.M. Pardalos (Eds), Encyclopedia of Optimization, Vol. 5, Kluwer Academic Publishers, Dordrecht, pp. 205–212.
[42] [42] Pázman, A. (1986). Foundations of Optimum Experimental Design, Mathematics and Its Applications, D. Reidel Publishing Company, Dordrecht.
[43] [43] Polak, E. (1987). On the mathematical foundations of nondifferentiable optimization in engineering design, SIAM Review 29(1): 21–89.
[44] [44] Polak, E. (1997). Optimization. Algorithms and Consistent Approximations, Applied Mathematical Sciences, Springer-Verlag, New York, NY.
[45] [45] Pronzato, L. (2003). Removing non-optimal support points in D-optimum design algorithms, Statistics Probability Letters 63: 223–228.
[46] [46] Pronzato, L. and Pázman, A. (2013). Design of Experiments in Nonlinear Models. Asymptotic Normality, Optimality Criteria and Small-Sample Properties, Springer-Verlag, New York, NY.
[47] [47] Pronzato, L. and Zhigljavsky, A.A. (2014). Algorithmic construction of optimal designs on compact sets for concave and differentiable criteria, Journal of Statistical Planning and Inference 154: 141–155.
[48] [48] Pukelsheim, F. (1993). Optimal Design of Experiments, Probability and Mathematical Statistics, John Wiley Sons, New York, NY.
[49] [49] Reemtsen, R. and Görner, S. (1998). Numerical methods for semi-infinite programming: A survey, in R. Reemtsen and J.-J. Rückmann (Eds), Semi-Infinite Programming, Kluwer Academic Publishers, Boston, MA, pp. 195–275.
[50] [50] Sagnol, G. (2011). Computing optimal designs of multiresponse experiments reduces to second-order cone programming, Journal of Statistical Planning and Inference 141(5): 1684–1708.
[51] [51] Sagnol, G. and Harman, R. (2015). Computing exact D-optimal designs by mixed integer second-order cone programming, The Annals of Statistics 43(5): 2198–2224.
[52] [52] Sahm, M. and Schwabe, R. (2001). A note on optimal bounded designs, in A. Atkinson et al. (Eds), Optimum Design 2000, Kluwer Academic Publishers, Dordrecht, Chapter 13, pp. 131–140.
[53] [53] Seber, G.A.F. and Wild, C.J. (1989). Nonlinear Regression, John Wiley Sons, New York, NY.
[54] [54] Shimizu, K. and Aiyoshi, E. (1980). Necessary conditions for min-max problems and algorithms by a relaxation procedure, IEEE Transactions on Automatic Control AC-25(1): 62–66.
[55] [55] Silvey, S.D., Titterington, D.M. and Torsney, B. (1978). An algorithm for optimal designs on a finite design space, Communications in Statistics—Theory and Methods 14: 1379–1389.
[56] [56] Torsney, B. and Mandal, S. (2001). Construction of constrained optimal designs, in A. Atkinson et al. (Eds), Optimum Design 2000, Kluwer Academic Publishers, Dordrecht, Chapter 14, pp. 141–152.
[57] [57] Uciński, D. (2005). Optimal Measurement Methods for Distributed-Parameter System Identification, CRC Press, Boca Raton, FL.
[58] [58] Uciński, D. (2012). Sensor network scheduling for identification of spatially distributed processes, International Journal of Applied Mathematics and Computer Science 22(1): 25–40, DOI: 10.2478/v10006-012-0002-0.
[59] [59] Uciński, D. (2015). An algorithm for construction of constrained D-optimum designs, in A. Steland et al. (Eds), Stochastic Models, Statistics and Their Applications, Springer Proceedings in Mathematics Statistics, Springer-Verlag, Cham, pp. 461–468.
[60] [60] Uciński, D. (2020). D-optimal sensor selection in the presence of correlated measurement noise, Measurement 164: 107873.
[61] [61] Uciński, D. and Patan, M. (2007). D-optimal design of a monitoring network for parameter estimation of distributed systems, Journal of Global Optimization 39(2): 291–322.
[62] [62] Wu, C.-F. (1978). Some algorithmic aspects of the theory of optimal designs, The Annals of Statistics 6(6): 1286–1301.
[63] [63] Yu, Y. (2010). Monotonic convergence of a general algorithm for computing optimal designs, The Annals of Statistics 38(3): 1593–1606.
[64] [64] Yu, Y. (2011). D-optimal designs via a cocktail algorithm, Statistics and Computing 21(3): 475–481.
[65] [65] Zarrop, M.B. and Goodwin, G.C. (1975). Comments on “Optimal inputs for system identification”, IEEE Transactions on Automatic Control AC-20(2): 299–300.
[66] [66] Zhang, L., Wu, S.-Y. and López, M.A. (2010). A new exchange method for convex semi-infinite programming, SIAM Journal on Optimization 20(6): 2959–2977.