Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2019_29_2_a7, author = {Bingi, Kishore and Ibrahim, Rosdiazli and Karsiti, Mohd Noh and Hassam, Sabo Miya and Harindran, Vivekananda Rajah}, title = {Frequency response based curve fitting approximation of fractional-order {PID} controllers}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {311--326}, publisher = {mathdoc}, volume = {29}, number = {2}, year = {2019}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/IJAMCS_2019_29_2_a7/} }
TY - JOUR AU - Bingi, Kishore AU - Ibrahim, Rosdiazli AU - Karsiti, Mohd Noh AU - Hassam, Sabo Miya AU - Harindran, Vivekananda Rajah TI - Frequency response based curve fitting approximation of fractional-order PID controllers JO - International Journal of Applied Mathematics and Computer Science PY - 2019 SP - 311 EP - 326 VL - 29 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/IJAMCS_2019_29_2_a7/ LA - en ID - IJAMCS_2019_29_2_a7 ER -
%0 Journal Article %A Bingi, Kishore %A Ibrahim, Rosdiazli %A Karsiti, Mohd Noh %A Hassam, Sabo Miya %A Harindran, Vivekananda Rajah %T Frequency response based curve fitting approximation of fractional-order PID controllers %J International Journal of Applied Mathematics and Computer Science %D 2019 %P 311-326 %V 29 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/IJAMCS_2019_29_2_a7/ %G en %F IJAMCS_2019_29_2_a7
Bingi, Kishore; Ibrahim, Rosdiazli; Karsiti, Mohd Noh; Hassam, Sabo Miya; Harindran, Vivekananda Rajah. Frequency response based curve fitting approximation of fractional-order PID controllers. International Journal of Applied Mathematics and Computer Science, Tome 29 (2019) no. 2, pp. 311-326. https://geodesic-test.mathdoc.fr/item/IJAMCS_2019_29_2_a7/
[1] Atherton, D.P., Tan, N. and Yüce, A. (2014). Methods for computing the time response of fractional-order systems, IET Control Theory Applications 9(6): 817–830.
[2] Balas, G., Chiang, R., Packard, A. and Safonov, M. (2007). Robust Control Toolbox 3: User’ Guide, MathWorks, Natick, MA.
[3] Bingi, K., Ibrahim, R., Karsiti, M.N., Hassan, S.M. And Harindran, V.R. (2018a). A comparative study of 2DOF PID and 2DOF fractional order PID controllers on a class of unstable systems, Archives of Control Sciences 28(4): 635–682.
[4] Bingi, K., Ibrahim, R., Karsiti, M.N., Hassan, S.M. And Harindran, V.R. (2018b). Real-time control of pressure plant using 2DOF fractional-order PID controller, Arabian Journal for Science and Engineering 44(3): 2091–2102.
[5] Caponetto, R. (2010). Fractional Order Systems: Modeling and Control Applications, World Scientific, Singapore.
[6] Das, S. (2011). Functional Fractional Calculus, Springer, Berlin/Heidelberg.
[7] de Oliveira Valério, D.P.M. (2005). Fractional Robust System Control, PhD thesis, Universidade Técnica de Lisboa, Lisboa.
[8] Deniz, F.N., Alagoz, B.B., Tan, N. and Atherton, D.P. (2016). An integer order approximation method based on stability boundary locus for fractional order derivative/integrator operators, ISA Transactions 62: 154–163.
[9] Djouambi, A., Charef, A. and Besançon, A.V. (2007). Optimal approximation, simulation and analog realization of the fundamental fractional order transfer function, International Journal of Applied Mathematics and Computer Science 17(4): 455–462, DOI: 10.2478/v10006-007-0037-9.
[10] Du, B., Wei, Y., Liang, S. and Wang, Y. (2017). Rational approximation of fractional order systems by vector fitting method, International Journal of Control, Automation and Systems 15(1): 186–195.
[11] Joice Nirmala, R. and Balachandran, K. (2017). The controllability of nonlinear implicit fractional delay dynamical systems, International Journal of Applied Mathematics and Computer Science 27(3): 501–513, DOI: 10.1515/amcs-2017-0035.
[12] Kaczorek, T. (2018). Decentralized stabilization of fractional positive descriptor continuous-time linear systems, International Journal of Applied Mathematics and Computer Science 28(1): 135–140, DOI: 10.2478/amcs-2018-0010.
[13] Khanra, M., Pal, J. and Biswas, K. (2011). Rational approximation and analog realization of fractional order differentiator, 2011 International Conference on Process Automation, Control and Computing (PACC), Coimbatore, India, pp. 1–6.
[14] Khanra, M., Pal, J. and Biswas, K. (2013). Rational approximation and analog realization of fractional order transfer function with multiple fractional powered terms, Asian Journal of Control 15(3): 723–735.
[15] Kishore, B., Ibrahim, R., Karsiti, M.N. and Hassan, S.M. (2017). Fractional-order filter design for set-point weighted PID controlled unstable systems, International Journal of Mechanical Mechatronics Engineering 17(5): 173–179.
[16] Kishore, B., Ibrahim, R., Karsiti, M.N. and Hassan, S.M. (2018). Fractional order set-point weighted PID controller for pH neutralization process using accelerated PSO algorithm, Arabian Journal for Science and Engineering 43(6): 2687–2701.
[17] Krajewski, W. and Viaro, U. (2011). On the rational approximation of fractional order systems, 16th International Conference on Methods and Models in Automation and Robotics (MMAR), Międzyzdroje, Poland, pp. 132–136.
[18] Krajewski, W. and Viaro, U. (2014). A method for the integer-order approximation of fractional-order systems, Journal of the Franklin Institute 351(1): 555–564.
[19] Krishna, B. (2011). Studies on fractional order differentiators and integrators: A survey, Signal Processing 91(3): 386–426.
[20] Li, Z., Liu, L., Dehghan, S., Chen, Y. and Xue, D. (2017). A review and evaluation of numerical tools for fractional calculus and fractional order controls, International Journal of Control 90(6): 1165–1181.
[21] Liang, S., Peng, C., Liao, Z. and Wang, Y. (2014). State space approximation for general fractional order dynamic systems, International Journal of Systems Science 45(10): 2203–2212.
[22] Meng, L. and Xue, D. (2012). A new approximation algorithm of fractional order system models based optimization, Journal of Dynamic Systems, Measurement, and Control 134(4): 044504.
[23] Merrikh-Bayat, F. (2012). Rules for selecting the parameters of Oustaloup recursive approximation for the simulation of linear feedback systems containing PIλDμ controller, Communications in Nonlinear Science and Numerical Simulation 17(4): 1852–1861.
[24] Mitkowski, W. and Oprzedkiewicz, K. (2016). An estimation of accuracy of Charef approximation, in S. Domek and P. Dworak (Eds.), Theoretical Developments and Applications of Non-Integer Order Systems, Springer, Berlin/Heidelberg, pp. 71–80.
[25] Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D. and Feliu-Batlle, V. (2010). Fractional-Order Systems and Controls: Fundamentals and Applications, Springer, Berlin/Heidelberg.
[26] Oprzedkiewicz, K. (2014). Approximation method for a fractional order transfer function with zero and pole, Archives of Control Sciences 24(4): 447–463.
[27] Oustaloup, A., Levron, F., Mathieu, B. and Nanot, F.M. (2000). Frequency-band complex noninteger differentiator: characterization and synthesis, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 47(1): 25–39.
[28] Pachauri, N., Singh, V. and Rani, A. (2018). Two degrees-of-freedom fractional-order proportional-integral-derivative-based temperature control of fermentation process, Journal of Dynamic Systems, Measurement, and Control 140(7): 071006.
[29] Petráš, I. (2011a). Fractional derivatives, fractional integrals, and fractional differential equations in Matlab, in A. Assi (Ed.), Engineering Education and Research Using MATLAB, InTech, London, pp. 239–264.
[30] Petráš, I. (2011b). Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation, Springer, Berlin/Heidelberg.
[31] Poinot, T. and Trigeassou, J.-C. (2003). A method for modelling and simulation of fractional systems, Signal processing 83(11): 2319–2333.
[32] Shah, P. and Agashe, S. (2016). Review of fractional PID controller, Mechatronics 38: 29–41.
[33] Sheng, H., Chen, Y. and Qiu, T. (2011). Fractional Processes and Fractional-Order Signal Processing: Techniques and Applications, Springer, Berlin/Heidelberg.
[34] Shi, G. (2016). On the nonconvergence of the vector fitting algorithm, IEEE Transactions on Circuits and Systems II: Express Briefs 63(8): 718–722.
[35] Tepljakov, A., Petlenkov, E. and Belikov, J. (2012). Application of Newton’s method to analog and digital realization of fractional-order controllers, International Journal of Microelectronics and Computer Science 2(2): 45–52.
[36] Valério, D., Trujillo, J.J., Rivero, M., Machado, J.T. And Baleanu, D. (2013). Fractional calculus: A survey of useful formulas, The European Physical Journal Special Topics 222(8): 1827–1846.
[37] Vinagre, B., Podlubny, I., Hernandez, A. and Feliu, V. (2000). Some approximations of fractional order operators used in control theory and applications, Fractional Calculus and Applied Analysis 3(3): 231–248.
[38] Wei, Y., Gao, Q., Peng, C. and Wang, Y. (2014a). A rational approximate method to fractional order systems, International Journal of Control, Automation and Systems 12(6): 1180–1186.
[39] Wei, Y., Gao, Q., Peng, C. and Wang, Y. (2014b). A rational approximate method to fractional order systems, International Journal of Control, Automation and Systems 12(6): 1180–1186.
[40] Xue, D. (2017). Fractional-order Control Systems: Fundamentals and Numerical Implementations, Walter de Gruyter GmbH, Berlin.
[41] Xue, D., Chen, Y. and Attherton, D.P. (2007). Linear Feedback Control: Analysis and Design with MATLAB, SIAM, Philadelphia, PA.
[42] Xue, D., Zhao, C. and Chen, Y. (2006). A modified approximation method of fractional order system, Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation, Luoyang, China pp. 1043–1048.
[43] Yüce, A., Deniz, F.N. and Tan, N. (2017). A new integer order approximation table for fractional order derivative operators, IFAC-PapersOnLine 50(1): 9736–9741.