Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2018_28_4_a4, author = {Cordero, G. and Santib\'a\~nez, V. and Dzul, A. and Sandoval, J.}, title = {Interconnection and damping assignment passivity-based control of an underactuated {2-DOF} gyroscope}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {661--677}, publisher = {mathdoc}, volume = {28}, number = {4}, year = {2018}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/IJAMCS_2018_28_4_a4/} }
TY - JOUR AU - Cordero, G. AU - Santibáñez, V. AU - Dzul, A. AU - Sandoval, J. TI - Interconnection and damping assignment passivity-based control of an underactuated 2-DOF gyroscope JO - International Journal of Applied Mathematics and Computer Science PY - 2018 SP - 661 EP - 677 VL - 28 IS - 4 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/IJAMCS_2018_28_4_a4/ LA - en ID - IJAMCS_2018_28_4_a4 ER -
%0 Journal Article %A Cordero, G. %A Santibáñez, V. %A Dzul, A. %A Sandoval, J. %T Interconnection and damping assignment passivity-based control of an underactuated 2-DOF gyroscope %J International Journal of Applied Mathematics and Computer Science %D 2018 %P 661-677 %V 28 %N 4 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/IJAMCS_2018_28_4_a4/ %G en %F IJAMCS_2018_28_4_a4
Cordero, G.; Santibáñez, V.; Dzul, A.; Sandoval, J. Interconnection and damping assignment passivity-based control of an underactuated 2-DOF gyroscope. International Journal of Applied Mathematics and Computer Science, Tome 28 (2018) no. 4, pp. 661-677. https://geodesic-test.mathdoc.fr/item/IJAMCS_2018_28_4_a4/
[1] Acosta, J., Ortega, R., Astolfi, A. and Mahindrakar, A. (2005). Interconnection and damping assignment passivity-based control of mechanical systems with underactuation degree one, IEEE Transactions on Automatic Control 50(12): 1936–1955.
[2] Aguilar-Ibanez, C. (2016). Stabilization of the PVTOL aircraft based on a sliding mode and a saturation function, International Journal of Robust and Nonlinear Control 27(5): 843–859.
[3] Antonio-Cruz, M., Hernandez-Guzman, V.M. and Silva-Ortigoza, R. (2018). Limit cycle elimination in inverted pendulums: Furuta pendulum and pendubot, IEEE Access 6: 30317–30332.
[4] Bloch, A.M. (2003). Nonholonomic Mechanics and Control, Springer-Verlag, New York, NY.
[5] Bloch, A.M., Reyhanoglu, M. and McClamroch, N.H. (1992). Control and stabilization of nonholonomic dynamic systems, IEEE Transactions on Automatic Control 37(11): 1746–1757.
[6] Cannon, R.H. (1967). Dynamics of Physical Systems, McGraw-Hill, New York, NY.
[7] Chang, D. (2014). On the method of interconnection and damping assignment passivity-based control for the stabilization of mechanical systems, Regular and Chaotic Dynamics 19(5): 556–575.
[8] Chin, C.S., Lau, M.W.S., Low, E. and Seet, G.G.L. (2006). A robust controller design method and stability analysis of an underactuated underwater vehicle, International Journal of Applied Mathematics and Computer Science 16(3): 345–356.
[9] Donaire, A., Mehra, R., Ortega, R., Satpute, S., Romero, J.G., Kazi, F. and Singh, N.M. (2015). Shaping the energy of mechanical systems without solving partial differential equations, American Control Conference, Chicago, IL, USA, pp. 1351–1356.
[10] Donaire, A., Romero, J.G., Ortega, R., Siciliano, B. and Crespo, M. (2016). Robust IDA-PBC for underactuated mechanical systems subject to matched disturbances, International Journal of Robust and Nonlinear Control 27(6): 1000–1016.
[11] Fantoni, I. and Lozano, R. (2002). Non-linear Control for Underactuated Mechanical Systems, Advances in Pattern Recognition, Springer, London.
[12] Ferraz-Mello, S. (2007). Canonical Perturbation Theories, 1st Edn., Springer-Verlag, New York, NY.
[13] Fulford, G., Forrester, P. and Jones, A. (1997). Modelling with Differential and Difference Equations, Australian Mathematical Society Lecture Series, Cambridge University Press, Cambridge.
[14] Gómez-Estern, F. and van der Schaft, A. (2004). Physical damping in IDA-PBC controlled underactuated mechanical systems, European Journal of Control 10(5): 451–468.
[15] Greenwood, D.T. (1977). Classical Dynamics, Dover, New York, NY.
[16] Jiang, Z.P. (2010). Controlling underactuated mechanical systems: A review and open problems, in J. L´evine and P. Müllhaupt (Eds.), Advances in the Theory of Control, Signals and Systems with Physical Modeling, Lecture Notes in Control and Information Sciences, Vol. 407, Springer, Berlin, pp. 77–88.
[17] Kang, W., Xiao, M. and Borges, C. (2003). New Trends in Nonlinear Dynamics and Control, and their Applications, 1st Edn., Springer-Verlag, Heidelberg/Berlin.
[18] Kelly, R., Santibánez, V. and Loría, A. (2005). Control of Robot Manipulators in Joint Space, 1st Edn., Springer-Verlag, London.
[19] Kotyczka, P. and Lohmann, B. (2009). Parametrization of IDA-PBC by assignment of local linear dynamics, Proceedings of the European Control Conference, Budapest, Hungary, pp. 4721–4726.
[20] Kozlov, V.V. (1996). Symmetries, Topology and Resonances in Hamiltonian Mechanics, 1st Edn., Springer-Verlag, Heidelberg/Berlin.
[21] Layek, G.C. (2015). An Introduction to Dynamical Systems and Chaos, 1st Edn., Springer, New Delhi.
[22] Liu, Y. (2018). Control of a class of multibody underactuated mechanical systems with discontinuous friction using sliding-mode, Transactions of the Institute of Measurement and Control 40(2): 514–527.
[23] Liu, Y. and Yu, H. (2013). A survey of underactuated mechanical systems, IET Control Theory and Applications 7(7): 921–931.
[24] Mahindrakar, A.D., Astolfi, A., Ortega, R. and Viola, G. (2006). Further constructive results on interconnection and damping assignment control of mechanical systems: The acrobot example, International Journal of Robust and Nonlinear Control 16(14): 671–685.
[25] Moreno-Valenzuela, J. and Aguilar-Avelar, C. (2018). Motion Control of Underactuated Mechanical Systems, 1st Edn., Springer International Publishing, Cham.
[26] Nagata, W. and Namachchivaya, N.S. (2006). Bifurcation Theory and Spatio-Temporal Pattern Formation, Fields Institute Communications, Ontario.
[27] Ortega, R., Spong, M., Gómez-Estern, F. and Blankeinstein, G. (2002). Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment, IEEE Transactions on Automatic Control 47(8): 1213–1233.
[28] Ostrowski, J.P. and Burdick, J.W. (1997). Controllability for mechanical systems with symmetries and constraints, Applied Mathematics and Computer Science 7(2): 305–331.
[29] Parks, R. (1999). Manual for model 750 control moment gyroscope, Technical document, Educational Control Products, Bell Canyon, CA, http://maecourses.ucsd.edu/ugcl/download/manuals/gyroscope.pdf.
[30] Quanser (2009). Specialty plant: 3 DOF gyroscope. User manual, Document Number 806, Revision 1.0, https://www.quanser.com/products/3-dof-gyroscope.
[31] Rana, N. and Joag, P. (1991). Classical Mechanics, Tata McGraw-Hill, New Delhi.
[32] Reyhanoglu, M. and van de Loo, J. (2006a). Rest-to-rest maneuvering of a nonholonomic control moment gyroscope, IEEE International Symposium on Industrial Electronics, Montreal, Canada, pp. 160–165.
[33] Reyhanoglu, M. and van de Loo, J. (2006b). State feedback tracking of a nonholonomic control moment gyroscope, Proceedings of the 45th IEEE Conference on Decision and Control, San Diego, CA, USA, pp. 6156–6161.
[34] Romero, J.G., Donaire, A., Ortega, R. and Borja, P. (2017). Global stabilisation of underactuated mechanical systems via PID passivity-based control, IFAC PapersOnLine 50(1): 9577–9582.
[35] Sabattini, L., Secchi, C. and Fantuzzi, C. (2017). Collision avoidance for multiple Lagrangian dynamical systems with gyroscopic forces, International Journal of Advanced Robotic Systems 1(15): 1–15.
[36] Sandoval, J., Kelly, R. and Santibanez, V. (2011). Interconnection and damping assignment passivity-based control of a class of underactuated mechanical systems with dynamic friction, International Journal of Robust and Nonlinear Control 21(7): 738–751.
[37] Sandoval, J., Ortega, R. and Kelly, R. (2008). Interconnection and damping assignment passivity-based control of the pendubot, Proceedings of the 17th IFAC World Congress, Seoul, Korea, pp. 7700–7704.
[38] Santibanez, V., Kelly, R. and Llama, M.A. (2004). Global asymptotic stability of a tracking sectorial fuzzy controller for robot manipulators, IEEE Transactions on Systems, Man, and Cybernetics B: Cybernetics 34(1): 710–718.
[39] Seifried, R. (2014). Dynamics of Underactuated Multibody Systems: Modeling, Control and Optimal Design (Solid Mechanics and Its Applications), Springer, Cham.
[40] Seyranian, A., Stoustrup, J. and Kliem, W. (1995). On gyroscopic stabilization, Journal of Applied Mathematics and Physics 46(2): 255–267.
[41] She, J., Zhang, A., Lai, X. and Wu, M. (2012). Global stabilization of 2-DOF underactuated mechanical systems: An equivalent-input-disturbance approach, Nonlinear Dynamics 69(1–2): 495–509.
[42] Wichlund, K.Y., Sordalen, O.J. and Egeland, O. (1995). Control of vehicles with second-order nonholonomic constraints: Underactuated vehicles, Proceedings of the 3rd European Control Conference, Rome, Italy, pp. 3086–3091.