Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2009_19_1_a5, author = {Ladaci, S. and Charef, A. and Loiseau, J. J.}, title = {Robust fractional adaptive control based on the strictly positive realness condition}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {69--76}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2009}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/IJAMCS_2009_19_1_a5/} }
TY - JOUR AU - Ladaci, S. AU - Charef, A. AU - Loiseau, J. J. TI - Robust fractional adaptive control based on the strictly positive realness condition JO - International Journal of Applied Mathematics and Computer Science PY - 2009 SP - 69 EP - 76 VL - 19 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/IJAMCS_2009_19_1_a5/ LA - en ID - IJAMCS_2009_19_1_a5 ER -
%0 Journal Article %A Ladaci, S. %A Charef, A. %A Loiseau, J. J. %T Robust fractional adaptive control based on the strictly positive realness condition %J International Journal of Applied Mathematics and Computer Science %D 2009 %P 69-76 %V 19 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/IJAMCS_2009_19_1_a5/ %G en %F IJAMCS_2009_19_1_a5
Ladaci, S.; Charef, A.; Loiseau, J. J. Robust fractional adaptive control based on the strictly positive realness condition. International Journal of Applied Mathematics and Computer Science, Tome 19 (2009) no. 1, pp. 69-76. https://geodesic-test.mathdoc.fr/item/IJAMCS_2009_19_1_a5/
[1] Anderson, B. D. and Vongpanitlerd, S. (1973). Network Analysis and Synthesis, Prentice-Hall, Englewood Cliffs, NJ.
[2] Åström, K. J. and Wittenmark, B. (1995). Adaptive Control, Addison-Wesley, Reading, MA.
[3] Bar-Kana, I. (1986). Positive realness in discrete-time adaptive control systems, International Journal of Systems Science 17(7): 1001-1006.
[4] Bar-Kana, I. (1987). Parallel feedforward and simplified adaptive control, International Journal Adaptive Control and Signal Processing 1(2): 95-109.
[5] Bar-Kana, I. (1989). On positive realness in multivariable stationary linear systems, Proceedings of the Conference on Information Sciences and Systems, Baltimore, MD, USA.
[6] Bar-Kana, I. and Kaufman, H. (1985). Global stability and performance of a simplified adaptive algorithm, International Journal of Control 42(6): 1491-1505.
[7] Brin, I. A. (1962). On the stability of certain systems with distributed and lumped parameters, Automation and Remote Control 23: 798-807.
[8] Charef, A. (2006). Analogue realisation of fractional-order integrator, differentiator and fractional PIλDμ controller, IEE Proceedings-Control Theory and Applications 153(6): 714-720.
[9] Charef, A., Sun, H. H., Tsao, Y. Y. and Onaral, B. (1992). Fractal system as represented by singularity function, IEEE Transactions on Automatic Control 37(9): 1465-1470.
[10] Desoer, C. A. and Vidyasagar, M. (1975). Feedback Systems: Input-Output Properties, Academic Press, New York, NY.
[11] Ioannou, P. and Sun, J. (1996). Robust Adaptive Control, Prentice Hall, Englewood Cliffs, NJ.
[12] Kwan, C., Dawson, D. M. and Lewis, F. L. (2001). Robust adaptive control of robots using neural network: Global stability, Asian Journal of Control 3(2): 111-121.
[13] Ladaci, S. and Charef, A. (2006). On fractional adaptive control, Nonlinear Dynamics 43(4): 365-378.
[14] Ladaci, S., Loiseau, J. J. and Charef, A. (2008). Fractional order adaptive high-gain controllers for a class of linear systems, Communications in Nonlinear Science and Numerical Simulations 13(4): 707-714.
[15] Ladaci, S. and Moulay, E. (2008). Lp-stability analysis of a class of nonlinear fractional differential equations, International Journal of Automation and Systems Engineering 2(1): 40-47.
[16] Landau, Y. D. (1979). Adaptive Control: The Model Reference Approach, Marcel Dekker, New York, NY.
[17] Miller, K. S. and Ross, B. (1993). An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley Interscience, New York, NY.
[18] Naceri, F. and Abida, L. (2003). A novel robust adaptive control algorithm for AC drives, Computers and Electrical Engineering 29: 523-534.
[19] Oustaloup, A. (1991). La commande CRONE, Hermès, Paris, (in French).
[20] Oustaloup, A., Sabatier, J. and Moreau, X. (1998). From fractal robustness to the crone approach, ESAIM: Proceedings, Fractional Differential Systems: Models, Methods and Applications 5: 177-192.
[21] Podlubny, I. (1999a). Fractional Differential Equations, Academic Press, New York, NY.
[22] Podlubny, I. (1999b). Fractional order systems and PiλDμ controllers, IEEE Transactions on Automatic Control 44(1): 208-214.
[23] Sabatier, J., Oustaloup, A., Iturricha, A. and Lanusse, P. (2002). Crone control: Principles and extension to time-variant plants with asymptotically constant coefficients, Nonlinear Dynamics 29: 363-385.
[24] Shaked, U. (1977). The zero properties of linear passive systems, IEEE Transactions on Automatic Control 22(6): 973-976.
[25] Sobel, K. and Kaufman, H. (1986). Direct model reference adaptive control for a class of MIMO systems, Control and Dynamic Systems 24: 973-976.
[26] Sun, H. and Charef, A. (1990). Fractal system-A time domain approach, Annals of Biomedical Engineering 18: 597-621.
[27] Vinagre, B., Petras,I. and Chen, Y. (2002). Using fractional order adjustment rules and fractional order reference models in model-reference adaptive control, Nonlinear Dynamics 29: 269-279.
[28] Zelmat, M. (2001). Commande Modale et Adaptative, OPU, Algiers.