Robust fractional adaptive control based on the strictly positive realness condition
International Journal of Applied Mathematics and Computer Science, Tome 19 (2009) no. 1, pp. 69-76.

Voir la notice de l'article provenant de la source Library of Science

This paper presents a new approach to robust adaptive control, using fractional order systems as parallel feedforward in the adaptation loop. The problem is that adaptive control systems may diverge when confronted with finite sensor and actuator dynamics, or with parasitic disturbances. One of the classical robust adaptive control solutions to these problems makes use of parallel feedforward and simplified adaptive controllers based on the concept of positive realness. The proposed control scheme is based on the Almost Strictly Positive Realness (ASPR) property of the plant. We show that this condition implies also robust stability in the case of fractional order controllers. An application to Model Reference Adaptive Control (MRAC) with a fractional order adaptation rule is provided with an implementable algorithm. A simulation example of a SISO robust adaptive control system illustrates the advantages of the proposed method in the presence of disturbances and noise.
Keywords: positive realness, robust control, adaptive control, fractional adaptive control, model reference adaptive control, feedforward, fractional calculus
Mots-clés : sterowanie odporne, sterowanie adaptacyjne, sprzężenie do przodu, rachunek ułamkowy
@article{IJAMCS_2009_19_1_a5,
     author = {Ladaci, S. and Charef, A. and Loiseau, J. J.},
     title = {Robust fractional adaptive control based on the strictly positive realness condition},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {69--76},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2009},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/IJAMCS_2009_19_1_a5/}
}
TY  - JOUR
AU  - Ladaci, S.
AU  - Charef, A.
AU  - Loiseau, J. J.
TI  - Robust fractional adaptive control based on the strictly positive realness condition
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2009
SP  - 69
EP  - 76
VL  - 19
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IJAMCS_2009_19_1_a5/
LA  - en
ID  - IJAMCS_2009_19_1_a5
ER  - 
%0 Journal Article
%A Ladaci, S.
%A Charef, A.
%A Loiseau, J. J.
%T Robust fractional adaptive control based on the strictly positive realness condition
%J International Journal of Applied Mathematics and Computer Science
%D 2009
%P 69-76
%V 19
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IJAMCS_2009_19_1_a5/
%G en
%F IJAMCS_2009_19_1_a5
Ladaci, S.; Charef, A.; Loiseau, J. J. Robust fractional adaptive control based on the strictly positive realness condition. International Journal of Applied Mathematics and Computer Science, Tome 19 (2009) no. 1, pp. 69-76. https://geodesic-test.mathdoc.fr/item/IJAMCS_2009_19_1_a5/

[1] Anderson, B. D. and Vongpanitlerd, S. (1973). Network Analysis and Synthesis, Prentice-Hall, Englewood Cliffs, NJ.

[2] Åström, K. J. and Wittenmark, B. (1995). Adaptive Control, Addison-Wesley, Reading, MA.

[3] Bar-Kana, I. (1986). Positive realness in discrete-time adaptive control systems, International Journal of Systems Science 17(7): 1001-1006.

[4] Bar-Kana, I. (1987). Parallel feedforward and simplified adaptive control, International Journal Adaptive Control and Signal Processing 1(2): 95-109.

[5] Bar-Kana, I. (1989). On positive realness in multivariable stationary linear systems, Proceedings of the Conference on Information Sciences and Systems, Baltimore, MD, USA.

[6] Bar-Kana, I. and Kaufman, H. (1985). Global stability and performance of a simplified adaptive algorithm, International Journal of Control 42(6): 1491-1505.

[7] Brin, I. A. (1962). On the stability of certain systems with distributed and lumped parameters, Automation and Remote Control 23: 798-807.

[8] Charef, A. (2006). Analogue realisation of fractional-order integrator, differentiator and fractional PIλDμ controller, IEE Proceedings-Control Theory and Applications 153(6): 714-720.

[9] Charef, A., Sun, H. H., Tsao, Y. Y. and Onaral, B. (1992). Fractal system as represented by singularity function, IEEE Transactions on Automatic Control 37(9): 1465-1470.

[10] Desoer, C. A. and Vidyasagar, M. (1975). Feedback Systems: Input-Output Properties, Academic Press, New York, NY.

[11] Ioannou, P. and Sun, J. (1996). Robust Adaptive Control, Prentice Hall, Englewood Cliffs, NJ.

[12] Kwan, C., Dawson, D. M. and Lewis, F. L. (2001). Robust adaptive control of robots using neural network: Global stability, Asian Journal of Control 3(2): 111-121.

[13] Ladaci, S. and Charef, A. (2006). On fractional adaptive control, Nonlinear Dynamics 43(4): 365-378.

[14] Ladaci, S., Loiseau, J. J. and Charef, A. (2008). Fractional order adaptive high-gain controllers for a class of linear systems, Communications in Nonlinear Science and Numerical Simulations 13(4): 707-714.

[15] Ladaci, S. and Moulay, E. (2008). Lp-stability analysis of a class of nonlinear fractional differential equations, International Journal of Automation and Systems Engineering 2(1): 40-47.

[16] Landau, Y. D. (1979). Adaptive Control: The Model Reference Approach, Marcel Dekker, New York, NY.

[17] Miller, K. S. and Ross, B. (1993). An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley Interscience, New York, NY.

[18] Naceri, F. and Abida, L. (2003). A novel robust adaptive control algorithm for AC drives, Computers and Electrical Engineering 29: 523-534.

[19] Oustaloup, A. (1991). La commande CRONE, Hermès, Paris, (in French).

[20] Oustaloup, A., Sabatier, J. and Moreau, X. (1998). From fractal robustness to the crone approach, ESAIM: Proceedings, Fractional Differential Systems: Models, Methods and Applications 5: 177-192.

[21] Podlubny, I. (1999a). Fractional Differential Equations, Academic Press, New York, NY.

[22] Podlubny, I. (1999b). Fractional order systems and PiλDμ controllers, IEEE Transactions on Automatic Control 44(1): 208-214.

[23] Sabatier, J., Oustaloup, A., Iturricha, A. and Lanusse, P. (2002). Crone control: Principles and extension to time-variant plants with asymptotically constant coefficients, Nonlinear Dynamics 29: 363-385.

[24] Shaked, U. (1977). The zero properties of linear passive systems, IEEE Transactions on Automatic Control 22(6): 973-976.

[25] Sobel, K. and Kaufman, H. (1986). Direct model reference adaptive control for a class of MIMO systems, Control and Dynamic Systems 24: 973-976.

[26] Sun, H. and Charef, A. (1990). Fractal system-A time domain approach, Annals of Biomedical Engineering 18: 597-621.

[27] Vinagre, B., Petras,I. and Chen, Y. (2002). Using fractional order adjustment rules and fractional order reference models in model-reference adaptive control, Nonlinear Dynamics 29: 269-279.

[28] Zelmat, M. (2001). Commande Modale et Adaptative, OPU, Algiers.