Regularization parameter selection in discrete ill-posed problems—The use of the U-curve
International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) no. 2, pp. 157-164.

Voir la notice de l'article provenant de la source Library of Science

To obtain smooth solutions to ill-posed problems, the standard Tikhonov regularization method is most often used. For the practical choice of the regularization parameter we can then employ the well-known L-curve criterion, based on the L-curve which is a plot of the norm of the regularized solution versus the norm of the corresponding residual for all valid regularization parameters. This paper proposes a new criterion for choosing the regularization parameter , based on the so-called U-curve. A comparison of the two methods made on numerical examples is additionally included.
Keywords: ill-posed problems, Tikhonov regularization, regularization parameter, L-curve, U-curve
Mots-clés : problem niewłaściwie postawiony, regularyzacja Tichonowa, parametr regularyzacji
@article{IJAMCS_2007_17_2_a1,
     author = {Krawczyk-Sta\'ndo, D. and Rudnicki, M.},
     title = {Regularization parameter selection in discrete ill-posed {problems{\textemdash}The} use of the {U-curve}},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {157--164},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2007},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/IJAMCS_2007_17_2_a1/}
}
TY  - JOUR
AU  - Krawczyk-Stańdo, D.
AU  - Rudnicki, M.
TI  - Regularization parameter selection in discrete ill-posed problems—The use of the U-curve
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2007
SP  - 157
EP  - 164
VL  - 17
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IJAMCS_2007_17_2_a1/
LA  - en
ID  - IJAMCS_2007_17_2_a1
ER  - 
%0 Journal Article
%A Krawczyk-Stańdo, D.
%A Rudnicki, M.
%T Regularization parameter selection in discrete ill-posed problems—The use of the U-curve
%J International Journal of Applied Mathematics and Computer Science
%D 2007
%P 157-164
%V 17
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IJAMCS_2007_17_2_a1/
%G en
%F IJAMCS_2007_17_2_a1
Krawczyk-Stańdo, D.; Rudnicki, M. Regularization parameter selection in discrete ill-posed problems—The use of the U-curve. International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) no. 2, pp. 157-164. https://geodesic-test.mathdoc.fr/item/IJAMCS_2007_17_2_a1/

[1] Groetsch N. (1984): The Theory of Tikhonov Regularization for Fredholm Integral Equations of the First Kind.-London: Pitman.

[2] Hansen P.C. (1992): Analysis of discrete ill-posed problems by means of the L-curve.-- SIAM Rev., Vol. 34, No. 4, pp. 561-580.

[3] Hansen P.C. and O'Leary D.P. (1993): The use of the L-curve in the regularization of discrete ill- posed problems.-SIAM J. Sci. Comput., Vol. 14, No. 6, pp. 487-1503.

[4] Hansen P.C. (1993): Regularization Tools, a Matlab package for analysis and solution of discrete ill-posed problems.-Report UNIC-92-03

[5] Krawczyk-Stańdo D. and Rudnicki M. (2005): Regularized synthesis of the magnetic field using the L-curve approach. - Int. J. Appl. Electromagnet. Mech., Vol. 22, No. 3-4, pp. 233-242.

[6] Lawson C.L. and Hanson R.J. (1974): Solving Least Squares Problems. - Englewood Cliffs, NJ: Prentice-Hall.

[7] Neittaanmaki P., Rudnicki M. and Savini A. (1996): Inverse Problems and Optimal Design in Electrity and Magnetism. - Oxford: Clarendon Press.

[8] Regińska T. (1996): A regularization parameter in discrete illposed problems. - SIAM J. Sci. Comput., Vol. 17, No. 3, pp. 740-749.

[9] Stańdo J., Korotow S., Rudnicki M., Krawczyk-Stańdo D. (2003): The use of quasi-red and quasi-yellow nonobtuse refinements in the solution of 2-D electromagnetic, PDE's, In: Optimization and inverse problems in electromagnetism (M. Rudnicki and S. Wiak, Ed.).- Dordrecht, Kluwer, pp. 113-124.

[10] Wahba G. (1977): Practical approximate solutions to linear operator equations when data are noisy.- SIAM J. Numer. Anal., Vol. 14, No. 4, pp. 651-667.