Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2004_14_4_a8, author = {Malanowski, K. D.}, title = {Convergence of the {Lagrange-Newton} {Method} for {Optimal} {Control} {Problems}}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {531--540}, publisher = {mathdoc}, volume = {14}, number = {4}, year = {2004}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/IJAMCS_2004_14_4_a8/} }
TY - JOUR AU - Malanowski, K. D. TI - Convergence of the Lagrange-Newton Method for Optimal Control Problems JO - International Journal of Applied Mathematics and Computer Science PY - 2004 SP - 531 EP - 540 VL - 14 IS - 4 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/IJAMCS_2004_14_4_a8/ LA - en ID - IJAMCS_2004_14_4_a8 ER -
%0 Journal Article %A Malanowski, K. D. %T Convergence of the Lagrange-Newton Method for Optimal Control Problems %J International Journal of Applied Mathematics and Computer Science %D 2004 %P 531-540 %V 14 %N 4 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/IJAMCS_2004_14_4_a8/ %G en %F IJAMCS_2004_14_4_a8
Malanowski, K. D. Convergence of the Lagrange-Newton Method for Optimal Control Problems. International Journal of Applied Mathematics and Computer Science, Tome 14 (2004) no. 4, pp. 531-540. https://geodesic-test.mathdoc.fr/item/IJAMCS_2004_14_4_a8/
[1] Agrachev A.A., Stefani G. and Zezza P.L. (2002): Strong optimality for a bang-bang trajectory. — SIAM J. Contr. Optim., Vol. 41, No. 4, pp. 991–1014.
[2] Alt W. (1990a): Lagrange-Newton method for infinite-dimensional optimization problems. — Numer. Funct. Anal. Optim., Vol. 11, No. 3/4, pp. 201–224.
[3] Alt W. (1990b): Parametric programming with applications to optimal control and sequential quadratic programming.— Bayreuther Math. Schriften, Vol. 34, No. 1, pp. 1–37.
[4] Alt W. (1990c): Stability of solutions and the Lagrange-Newton method for nonlinear optimization and optimal control problems. — (Habilitationsschrift), Universität Bayreuth, Bayreuth.
[5] Alt W. and Malanowski K. (1993): The Lagrange-Newton method for nonlinear optimal control problems. — Comput. Optim. Appl., Vol. 2, No. 1, pp. 77–100.
[6] Alt W. and Malanowski K. (1995): The Lagrange-Newton method for state constrained optimal control problems. — Comput. Optim. Appl., Vol. 4, No. 3, pp. 217–239.
[7] Bonnans J.F. and Shapiro A. (2000): Perturbation Analysis of Optimization Problem. — New York: Springer.
[8] Bulirsch R. (1971): Die Mehrzielmethode zur numerischen Lösung von nichtlinearen Randwertproblemen und Aufgaben der optimalen Steuerung. — Report of the Carl-Cranz-Gesellschaft, Oberpfaffenhofen, 1971.
[9] Dontchev A.L. and Hager W.W. (1998): Lipschitz stability for state constrained nonlinear optimal control. — SIAM J. Contr. Optim., Vol. 35, No. 2, pp. 696–718.
[10] Felgenhauer U. (2002): On stability of bang-bang type controls. — SIAM J. Contr. Optim., Vol. 41, No. 6, pp. 1843–1867.
[11] Kim J.-H.R. and Maurer H. (2003): Sensitivity analysis of optimal control problems with bang-bang controls. — Proc. 42nd IEEE Conf. Decision and Control, CDC’2003, Maui, Hawaii, USA, pp. 3281–3286.
[12] Malanowski K. (1994): Regularity of solutions in stability analysis of optimization and optimal control problems.—Contr. Cybern., Vol. 23, No. 1/2, pp. 61–86.
[13] Malanowski K. (1995): Stability and sensitivity of solutions to nonlinear optimal control problems. — Appl. Math. Optim., Vol. 32, No. 2, pp. 111–141.
[14] Malanowski K. (2001): Stability and sensitivity analysis for optimal control problems with control-state constraints. — Dissertationes Mathematicae, Vol. CCCXCIV, pp. 1–51.
[15] Malanowski K. and Maurer H. (1996a): Sensitivity analysis for parametric optimal control problems with control-state constraints. — Comput. Optim. Appl., Vol. 5, No. 3, pp. 253–283.
[16] Malanowski K. and Maurer H. (1996b): Sensitivity analysis for state-constrained optimal control problems. — Discr. Cont. Dynam. Syst., Vol. 4, No. 2, pp. 241–272.
[17] Malanowski K. and Maurer H. (2001): Sensitivity analysis for optimal control problems subject to higher order state constraints.— Ann. Oper. Res., Vol. 101, No. 2, pp. 43–73.
[18] Maurer H. and Oberle J. (2002): Second order sufficient conditions for optimal control problems with free final time: the Riccati approach. — SIAM J. Contr. Optim., Vol. 41, No. 2, pp. 380–403.
[19] Maurer H. and Osmolovskii N. (2004): Second order optimality conditions for bang-bang control problems. — Contr. Cybern., Vol. 32, No. 3. pp. 555–584.
[20] Maurer H. and Pesch H.J. (1994): Solution differentiability for parametric optimal control problems with control-state constraints. — Contr. Cybern., Vol. 23, No. 1, pp. 201–227.
[21] Robinson S.M. (1980): Strongly regular generalized equations. —Math. Oper. Res., Vol. 5, No. 1, pp. 43–62.
[22] Stoer J. and Bulirsch R. (1980): Introduction to Numerical Analysis.— New York: Springer.