A MAD Q-set
Fundamenta Mathematicae, Tome 178 (2003) no. 3, p. 271.

Voir la notice de l'article dans European Digital Mathematics Library

A MAD (maximal almost disjoint) family is an infinite subset of the infinite subsets of ω = 0,1,2,... such that any two elements of intersect in a finite set and every infinite subset of ω meets some element of in an infinite set. A Q-set is an uncountable set of reals such that every subset is a relative G δ -set. It is shown that it is relatively consistent with ZFC that there exists a MAD family which is also a Q-set in the topology it inherits as a subset of P ( ω ) = 2 ω .
@article{FUNDAM_2003__178_3_282884,
     author = {Arnold W. Miller},
     title = {A {MAD} {Q-set}},
     journal = {Fundamenta Mathematicae},
     pages = {271},
     publisher = {mathdoc},
     volume = {178},
     number = {3},
     year = {2003},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/FUNDAM_2003__178_3_282884/}
}
TY  - JOUR
AU  - Arnold W. Miller
TI  - A MAD Q-set
JO  - Fundamenta Mathematicae
PY  - 2003
SP  - 271
VL  - 178
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/FUNDAM_2003__178_3_282884/
LA  - en
ID  - FUNDAM_2003__178_3_282884
ER  - 
%0 Journal Article
%A Arnold W. Miller
%T A MAD Q-set
%J Fundamenta Mathematicae
%D 2003
%P 271
%V 178
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/FUNDAM_2003__178_3_282884/
%G en
%F FUNDAM_2003__178_3_282884
Arnold W. Miller. A MAD Q-set. Fundamenta Mathematicae, Tome 178 (2003) no. 3, p. 271. https://geodesic-test.mathdoc.fr/item/FUNDAM_2003__178_3_282884/