On confluently graph-like compacta
Fundamenta Mathematicae, Tome 178 (2003) no. 2, p. 109.

Voir la notice de l'article dans European Digital Mathematics Library

For any class 𝒦 of compacta and any compactum X we say that: (a) X is confluently 𝒦-representable if X is homeomorphic to the inverse limit of an inverse sequence of members of 𝒦 with confluent bonding mappings, and (b) X is confluently 𝒦-like provided that X admits, for every ε >0, a confluent ε-mapping onto a member of 𝒦. The symbol 𝕃ℂ stands for the class of all locally connected compacta. It is proved in this paper that for each compactum X and each family 𝒦 of graphs, X is confluently 𝒦-representable if and only if X is confluently 𝒦-like. We also show that for any compactum the properties of: (1) being confluently graph-representable, and (2) being 1-dimensional and confluently 𝕃ℂ-like, are equivalent. Consequently, all locally connected curves are confluently graph-representable. We also conclude that all confluently arc-like continua are homeomorphic to inverse limits of arcs with open bonding mappings, and all confluently tree-like continua are absolute retracts for hereditarily unicoherent continua.
Classification : 54F15, 54C10, 54C15, 54E45
Mots-clés : Confluent mapping, -mapping, confluently graph-like continua, confluently graph-representable continua
@article{FUNDAM_2003__178_2_283219,
     author = {Lex G. Oversteegen and Janusz R. Prajs},
     title = {On confluently graph-like compacta},
     journal = {Fundamenta Mathematicae},
     pages = {109},
     publisher = {mathdoc},
     volume = {178},
     number = {2},
     year = {2003},
     zbl = {1054.54010},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/FUNDAM_2003__178_2_283219/}
}
TY  - JOUR
AU  - Lex G. Oversteegen
AU  - Janusz R. Prajs
TI  - On confluently graph-like compacta
JO  - Fundamenta Mathematicae
PY  - 2003
SP  - 109
VL  - 178
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/FUNDAM_2003__178_2_283219/
LA  - en
ID  - FUNDAM_2003__178_2_283219
ER  - 
%0 Journal Article
%A Lex G. Oversteegen
%A Janusz R. Prajs
%T On confluently graph-like compacta
%J Fundamenta Mathematicae
%D 2003
%P 109
%V 178
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/FUNDAM_2003__178_2_283219/
%G en
%F FUNDAM_2003__178_2_283219
Lex G. Oversteegen; Janusz R. Prajs. On confluently graph-like compacta. Fundamenta Mathematicae, Tome 178 (2003) no. 2, p. 109. https://geodesic-test.mathdoc.fr/item/FUNDAM_2003__178_2_283219/