Universal acyclic resolutions for arbitrary coefficient groups
Fundamenta Mathematicae, Tome 178 (2003) no. 2, p. 159.
Voir la notice de l'article dans European Digital Mathematics Library
We prove that for every compactum X and every integer n ≥ 2 there are a compactum Z of dimension ≤ n+1 and a surjective
U
V
n
-
1
-map r: Z → X such that for every abelian group G and every integer k ≥ 2 such that
d
i
m
G
X
≤
k
≤
n
we have
d
i
m
G
Z
≤
k
and r is G-acyclic.
Classification :
54F45, 55M10
Mots-clés : cohomological dimension, -acyclic map, UV-map, covering dimension, acyclic resolution
Mots-clés : cohomological dimension, -acyclic map, UV-map, covering dimension, acyclic resolution
@article{FUNDAM_2003__178_2_283189, author = {Michael Levin}, title = {Universal acyclic resolutions for arbitrary coefficient groups}, journal = {Fundamenta Mathematicae}, pages = {159}, publisher = {mathdoc}, volume = {178}, number = {2}, year = {2003}, zbl = {1055.55001}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/FUNDAM_2003__178_2_283189/} }
Michael Levin. Universal acyclic resolutions for arbitrary coefficient groups. Fundamenta Mathematicae, Tome 178 (2003) no. 2, p. 159. https://geodesic-test.mathdoc.fr/item/FUNDAM_2003__178_2_283189/