Universal acyclic resolutions for arbitrary coefficient groups
Fundamenta Mathematicae, Tome 178 (2003) no. 2, p. 159.

Voir la notice de l'article dans European Digital Mathematics Library

We prove that for every compactum X and every integer n ≥ 2 there are a compactum Z of dimension ≤ n+1 and a surjective U V n - 1 -map r: Z → X such that for every abelian group G and every integer k ≥ 2 such that d i m G X ≤ k ≤ n we have d i m G Z ≤ k and r is G-acyclic.
Classification : 54F45, 55M10
Mots-clés : cohomological dimension, -acyclic map, UV-map, covering dimension, acyclic resolution
@article{FUNDAM_2003__178_2_283189,
     author = {Michael Levin},
     title = {Universal acyclic resolutions for arbitrary coefficient groups},
     journal = {Fundamenta Mathematicae},
     pages = {159},
     publisher = {mathdoc},
     volume = {178},
     number = {2},
     year = {2003},
     zbl = {1055.55001},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/FUNDAM_2003__178_2_283189/}
}
TY  - JOUR
AU  - Michael Levin
TI  - Universal acyclic resolutions for arbitrary coefficient groups
JO  - Fundamenta Mathematicae
PY  - 2003
SP  - 159
VL  - 178
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/FUNDAM_2003__178_2_283189/
LA  - en
ID  - FUNDAM_2003__178_2_283189
ER  - 
%0 Journal Article
%A Michael Levin
%T Universal acyclic resolutions for arbitrary coefficient groups
%J Fundamenta Mathematicae
%D 2003
%P 159
%V 178
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/FUNDAM_2003__178_2_283189/
%G en
%F FUNDAM_2003__178_2_283189
Michael Levin. Universal acyclic resolutions for arbitrary coefficient groups. Fundamenta Mathematicae, Tome 178 (2003) no. 2, p. 159. https://geodesic-test.mathdoc.fr/item/FUNDAM_2003__178_2_283189/