The ℤ₂-cohomology cup-length of real flag manifolds
Fundamenta Mathematicae, Tome 178 (2003) no. 2, p. 143.
Voir la notice de l'article dans European Digital Mathematics Library
Using fiberings, we determine the cup-length and the Lyusternik-Shnirel’man category for some infinite families of real flag manifolds
O
(
n
₁
+
.
.
.
+
n
q
)
/
O
(
n
₁
)
×
.
.
.
×
O
(
n
q
)
, q ≥ 3. We also give, or describe ways to obtain, interesting estimates for the cup-length of any
O
(
n
₁
+
.
.
.
+
n
q
)
/
O
(
n
₁
)
×
.
.
.
×
O
(
n
q
)
, q ≥ 3. To present another approach (combining well with the “method of fiberings”), we generalize to the real flag manifolds Stong’s approach used for calculations in the ℤ₂-cohomology algebra of the Grassmann manifolds.
Classification :
55R05, 57T15, 57R19, 57R20, 55M30
Mots-clés : flag manifold, cup-length, LS-category
Mots-clés : flag manifold, cup-length, LS-category
@article{FUNDAM_2003__178_2_283181, author = {J\'ulius Korba\v{s} and Juraj L\"orinc}, title = {The {\ensuremath{\mathbb{Z}}₂-cohomology} cup-length of real flag manifolds}, journal = {Fundamenta Mathematicae}, pages = {143}, publisher = {mathdoc}, volume = {178}, number = {2}, year = {2003}, zbl = {1052.55006}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/FUNDAM_2003__178_2_283181/} }
Július Korbaš; Juraj Lörinc. The ℤ₂-cohomology cup-length of real flag manifolds. Fundamenta Mathematicae, Tome 178 (2003) no. 2, p. 143. https://geodesic-test.mathdoc.fr/item/FUNDAM_2003__178_2_283181/