Practical methods to investigate observability of linear time-varying systems
Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 2, pp. 221-236.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work proposes practical methodology to investigate observability of linear time-varying systems. The methodology comprises analytical and numerical methods, as well as a technique to verify results of analytical investigation numerically. Employing reducibility in the analysis of observability is demonstrated.
@article{FPM_2018_22_2_a14,
     author = {V. M. Morozov and F. Yu. Baklanov},
     title = {Practical methods to investigate observability of linear time-varying systems},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {221--236},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2018},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/FPM_2018_22_2_a14/}
}
TY  - JOUR
AU  - V. M. Morozov
AU  - F. Yu. Baklanov
TI  - Practical methods to investigate observability of linear time-varying systems
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2018
SP  - 221
EP  - 236
VL  - 22
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/FPM_2018_22_2_a14/
LA  - ru
ID  - FPM_2018_22_2_a14
ER  - 
%0 Journal Article
%A V. M. Morozov
%A F. Yu. Baklanov
%T Practical methods to investigate observability of linear time-varying systems
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2018
%P 221-236
%V 22
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/FPM_2018_22_2_a14/
%G ru
%F FPM_2018_22_2_a14
V. M. Morozov; F. Yu. Baklanov. Practical methods to investigate observability of linear time-varying systems. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 2, pp. 221-236. https://geodesic-test.mathdoc.fr/item/FPM_2018_22_2_a14/

[1] Aleksandrov V. V., Lemak S. S., Parusnikov N. A., Lektsii po mekhanike upravlyaemykh sistem, MAKS Press, M., 2012

[2] Vavilova N. B., Vasineva I. A., Parusnikov N. A., “O stendovoi kalibrovke aviatsionnykh beskardannykh inertsialnykh navigatsionnykh sistem”, Tr. MAI, 84 (2015)

[3] Vavilova N. B., Parusnikov N. A., Sazonov I. V., “Kalibrovka beskardannykh inertsialnykh navigatsionnykh sistem pri pomoschi grubykh odnostepennykh stendov”, Sovr. probl. matem. i mekh., 1 (2009), 212–223

[4] Vavilova N. B., Sazonov I. V., “Kalibrovka beskardannoi inertsialnoi navigatsionnoi sistemy v sbore na grubykh stendakh s odnoi stepenyu svobody”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2012, no. 4, 64–66

[5] Vasineva I. A., Kalibrovka beskardannoi inertsialnoi navigatsionnoi sistemy v sbore na tochnykh stendakh, Dis.\ldots kand. fiz.-mat. nauk, M., 2017

[6] Golovan A. A., Parusnikov N. A., Matematicheskie osnovy navigatsionnykh sistem, v. II, Prilozhenie metodov optimalnogo otsenivaniya k zadacham navigatsii, MAKS Press, M., 2012

[7] Kalenova V. I., Morozov V. M., Lineinye nestatsionarnye sistemy i ikh prilozheniya k zadacham mekhaniki, Fizmatlit, M., 2010 | MR

[8] Morozov V. M., Kalenova V. I., Otsenivanie i upravlenie v nestatsionarnykh lineinykh sistemakh, Izd-vo Mosk. un-ta, M., 1988

[9] Sazonov I. Yu., Identifikatsiya parametrov instrumentalnykh pogreshnostei beskardannoi inertsialnoi navigatsionnoi sistemy pri pomoschi grubykh odnostepennykh stendov, Dis.\ldots kand. fiz.-mat. nauk, M., 2012

[10] Baklanov F., Platform-Autonomous Fault-Tolerant Attitude/Heading Reference and Navigation Systems, Ph. D. Thesis, Tech. Univ. München, 2017

[11] Braun B., High Performance Kalman Filter Tuning for Integrated Navigation Systems, Ph.D. Thesis, Tech. Univ. München, 2016

[12] Crocoll Ph., Gorcke L., Trommer G. F., Holzapfel F., “Unified model technique for inertial navigation aided by vehicle dynamics model”, Navigation, 60:3 (2013), 179–193 | DOI

[13] Farrell J., Aided Navigation: GPS with High Rate Sensors, McGraw-Hill, New York, 2008

[14] Groves P. D., Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems, Artech House, 2013 | Zbl

[15] Jategaonkar R. V., Flight Vehicle System Identification: A Time-Domain Methodology, Progress Astronaut. Aeronaut., Amer. Inst. Aeronaut. Astronaut., 2015

[16] Jikuya I., Hodaka I., “Kalman canonical decomposition of linear time-varying systems”, SIAM J. Control Optim., 52:1 (2014), 274–310 | DOI | MR | Zbl

[17] Kalman R. E., “Canonical structure of linear dynamic systems”, Poc. Natl. Acad. Sci. USA, 48:4 (1962), 596–600 | DOI | MR | Zbl

[18] Kwakernaak H., Linear Optimal Control Systems, Wiley, New York, 1972 | MR | Zbl

[19] Lancaster P., Tismenetsky M., The Theory of Matrices: With Applications, Comput. Sci. Sci. Comput. Ser., Academic Press, London, 1985 | MR

[20] Minkler G., Minkler J., Theory and Application of Kalman Filtering, Magellan Book Comp., 1993