Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2018_22_2_a14, author = {V. M. Morozov and F. Yu. Baklanov}, title = {Practical methods to investigate observability of linear time-varying systems}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {221--236}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2018}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/FPM_2018_22_2_a14/} }
TY - JOUR AU - V. M. Morozov AU - F. Yu. Baklanov TI - Practical methods to investigate observability of linear time-varying systems JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2018 SP - 221 EP - 236 VL - 22 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/FPM_2018_22_2_a14/ LA - ru ID - FPM_2018_22_2_a14 ER -
%0 Journal Article %A V. M. Morozov %A F. Yu. Baklanov %T Practical methods to investigate observability of linear time-varying systems %J Fundamentalʹnaâ i prikladnaâ matematika %D 2018 %P 221-236 %V 22 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/FPM_2018_22_2_a14/ %G ru %F FPM_2018_22_2_a14
V. M. Morozov; F. Yu. Baklanov. Practical methods to investigate observability of linear time-varying systems. Fundamentalʹnaâ i prikladnaâ matematika, Tome 22 (2018) no. 2, pp. 221-236. https://geodesic-test.mathdoc.fr/item/FPM_2018_22_2_a14/
[1] Aleksandrov V. V., Lemak S. S., Parusnikov N. A., Lektsii po mekhanike upravlyaemykh sistem, MAKS Press, M., 2012
[2] Vavilova N. B., Vasineva I. A., Parusnikov N. A., “O stendovoi kalibrovke aviatsionnykh beskardannykh inertsialnykh navigatsionnykh sistem”, Tr. MAI, 84 (2015)
[3] Vavilova N. B., Parusnikov N. A., Sazonov I. V., “Kalibrovka beskardannykh inertsialnykh navigatsionnykh sistem pri pomoschi grubykh odnostepennykh stendov”, Sovr. probl. matem. i mekh., 1 (2009), 212–223
[4] Vavilova N. B., Sazonov I. V., “Kalibrovka beskardannoi inertsialnoi navigatsionnoi sistemy v sbore na grubykh stendakh s odnoi stepenyu svobody”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2012, no. 4, 64–66
[5] Vasineva I. A., Kalibrovka beskardannoi inertsialnoi navigatsionnoi sistemy v sbore na tochnykh stendakh, Dis.\ldots kand. fiz.-mat. nauk, M., 2017
[6] Golovan A. A., Parusnikov N. A., Matematicheskie osnovy navigatsionnykh sistem, v. II, Prilozhenie metodov optimalnogo otsenivaniya k zadacham navigatsii, MAKS Press, M., 2012
[7] Kalenova V. I., Morozov V. M., Lineinye nestatsionarnye sistemy i ikh prilozheniya k zadacham mekhaniki, Fizmatlit, M., 2010 | MR
[8] Morozov V. M., Kalenova V. I., Otsenivanie i upravlenie v nestatsionarnykh lineinykh sistemakh, Izd-vo Mosk. un-ta, M., 1988
[9] Sazonov I. Yu., Identifikatsiya parametrov instrumentalnykh pogreshnostei beskardannoi inertsialnoi navigatsionnoi sistemy pri pomoschi grubykh odnostepennykh stendov, Dis.\ldots kand. fiz.-mat. nauk, M., 2012
[10] Baklanov F., Platform-Autonomous Fault-Tolerant Attitude/Heading Reference and Navigation Systems, Ph. D. Thesis, Tech. Univ. München, 2017
[11] Braun B., High Performance Kalman Filter Tuning for Integrated Navigation Systems, Ph.D. Thesis, Tech. Univ. München, 2016
[12] Crocoll Ph., Gorcke L., Trommer G. F., Holzapfel F., “Unified model technique for inertial navigation aided by vehicle dynamics model”, Navigation, 60:3 (2013), 179–193 | DOI
[13] Farrell J., Aided Navigation: GPS with High Rate Sensors, McGraw-Hill, New York, 2008
[14] Groves P. D., Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems, Artech House, 2013 | Zbl
[15] Jategaonkar R. V., Flight Vehicle System Identification: A Time-Domain Methodology, Progress Astronaut. Aeronaut., Amer. Inst. Aeronaut. Astronaut., 2015
[16] Jikuya I., Hodaka I., “Kalman canonical decomposition of linear time-varying systems”, SIAM J. Control Optim., 52:1 (2014), 274–310 | DOI | MR | Zbl
[17] Kalman R. E., “Canonical structure of linear dynamic systems”, Poc. Natl. Acad. Sci. USA, 48:4 (1962), 596–600 | DOI | MR | Zbl
[18] Kwakernaak H., Linear Optimal Control Systems, Wiley, New York, 1972 | MR | Zbl
[19] Lancaster P., Tismenetsky M., The Theory of Matrices: With Applications, Comput. Sci. Sci. Comput. Ser., Academic Press, London, 1985 | MR
[20] Minkler G., Minkler J., Theory and Application of Kalman Filtering, Magellan Book Comp., 1993