Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2016_21_5_a4, author = {A. A. Grigor'yan and Yong Lin and Yu. V. Muranov and Shing-Tung Yau}, title = {Path complexes and their homologies}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {79--128}, publisher = {mathdoc}, volume = {21}, number = {5}, year = {2016}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/FPM_2016_21_5_a4/} }
TY - JOUR AU - A. A. Grigor'yan AU - Yong Lin AU - Yu. V. Muranov AU - Shing-Tung Yau TI - Path complexes and their homologies JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2016 SP - 79 EP - 128 VL - 21 IS - 5 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/FPM_2016_21_5_a4/ LA - ru ID - FPM_2016_21_5_a4 ER -
A. A. Grigor'yan; Yong Lin; Yu. V. Muranov; Shing-Tung Yau. Path complexes and their homologies. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 5, pp. 79-128. https://geodesic-test.mathdoc.fr/item/FPM_2016_21_5_a4/
[1] Babson E., Barcelo H., de Longueville M., Laubenbacher R., “Homotopy theory of graphs”, J. Algebraic Combin., 24 (2006), 31–44 | DOI | MR | Zbl
[2] Barcelo H., Kramer X., Laubenbacher R., Weaver Ch., “Foundations of a connectivity theory for simplicial complexes”, Adv. Appl. Math., 26 (2001), 97–128 | DOI | MR | Zbl
[3] Bourbaki N., Elements of Mathematics. Algebra I. Chapters 1–3, Springer, Berlin, 1989 | MR | Zbl
[4] Chen B., Yau S.-T., Yeh Y.-N., “Graph homotopy and Graham homotopy”, Discrete Math., 241 (2001), 153–170 | DOI | MR | Zbl
[5] Dimakis A., Müller-Hoissen F., “Differential calculus and gauge theory on finite sets”, J. Phys. A. Math. Gen., 27:9 (1994), 3159–3178 | DOI | MR | Zbl
[6] Dimakis A., Müller-Hoissen F., “Discrete differential calculus: graphs, topologies, and gauge theory”, J. Math. Phys., 35:12 (1994), 6703–6735 | DOI | MR | Zbl
[7] Gerstenhaber M., Schack S. D., “Simplicial cohomology is Hochschild cohomology”, J. Pure Appl. Algebra, 30 (1983), 143–156 | DOI | MR | Zbl
[8] Grigor'yan A., Lin Y., Muranov Yu., Yau S.-T., Homologies of path complexes and digraphs, 2013, arXiv: 1207.2834v4
[9] Grigor'yan A., Lin Y., Muranov Yu., Yau S.-T., “Homotopy theory for digraphs”, Pure Appl. Math. Q, 10:4 (2014), 619–674 | DOI | MR | Zbl
[10] Grigor'yan A., Muranov Yu., Yau S.-T., “Graphs associated with simplicial complexes”, Homology, Homotopy Appl., 16:1 (2014), 295–311 | DOI | MR | Zbl
[11] Grigor'yan A., Muranov Yu., Yau S.-T., “On a cohomology of digraphs and Hochschild cohomology”, J. Homotopy Relat. Struct., 11:2 (2016), 209–230 | DOI | MR | Zbl
[12] Grigor'yan A., Muranov Yu., Yau S.-T., “Cohomology of digraphs and (undirected) graphs”, Asian J. Math., 19 (2015), 887–932 | DOI | MR
[13] Grigor'yan A., Muranov Yu., Yau S.-T., “Homologies of digraphs and Künneth formulas”, Comm. Anal. Geom., 2016 | MR
[14] Happel D., “Hochschild cohomology of finite-dimensional algebras”, Sém. d'Algèbre Paul Dubreil et Marie-Paul Malliavin, Lect. Notes Math., 1404, Springer, Berlin, 1989, 108–126 | DOI | MR
[15] Ivashchenko A. V., “Contractible transformations do not change the homology groups of graphs”, Discrete Math., 126 (1994), 159–170 | DOI | MR | Zbl
[16] MacLane S., Homology, Grundlag. Math. Wissensch., 114, Springer, Berlin, 1963 | MR | Zbl
[17] Tahbaz-Salehi A., Jadbabaie A., “Distributed coverage verification in sensor networks without location information”, IEEE Trans. Automatic Control., 55 (2010), 1837–1849 | DOI | MR | Zbl
[18] Talbi M. E., Benayat D., “Homology theory of graphs”, Mediterranean J. Math., 11 (2014), 813–828 | DOI | MR | Zbl