Classes of Maxwell spaces that admit subgroups of the Poincar\'e group
Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 1, pp. 183-237.

Voir la notice de l'article provenant de la source Math-Net.Ru

A Maxwell space is a triple (M,g,F), where M is the four-dimensional Minkowski space or a domain in it, g is a pseudo-Euclidean metric on M, and F is a closed exterior 2-form on M. In this paper, we give an exhaustive description of classes of Maxwell spaces that admit subgroups of the Poincaré group. Representatives of all classes are constructed.
@article{FPM_2004_10_1_a9,
     author = {M. A. Parinov},
     title = {Classes of {Maxwell} spaces that admit subgroups of the {Poincar\'e} group},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {183--237},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2004},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/FPM_2004_10_1_a9/}
}
TY  - JOUR
AU  - M. A. Parinov
TI  - Classes of Maxwell spaces that admit subgroups of the Poincar\'e group
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2004
SP  - 183
EP  - 237
VL  - 10
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/FPM_2004_10_1_a9/
LA  - ru
ID  - FPM_2004_10_1_a9
ER  - 
%0 Journal Article
%A M. A. Parinov
%T Classes of Maxwell spaces that admit subgroups of the Poincar\'e group
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2004
%P 183-237
%V 10
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/FPM_2004_10_1_a9/
%G ru
%F FPM_2004_10_1_a9
M. A. Parinov. Classes of Maxwell spaces that admit subgroups of the Poincar\'e group. Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 1, pp. 183-237. https://geodesic-test.mathdoc.fr/item/FPM_2004_10_1_a9/

[1] Belova O. G., Zarembo A. N., Parinov M. A., Sergeeva O. O., Ugarova Yu. G., “Klassifikatsiya staticheskikh elektromagnitnykh polei po podgruppam gruppy Puankare”, Nauchnye trudy Ivanovskogo gos. un-ta. Matematika, 3, 2000, 11–22

[2] Belko I. V., “Podgruppy gruppy Lorentsa–Puankare”, Izv. AN BSSR. Ser. fiz. -mat. nauk, 1971, no. 1, 5–13 | MR

[3] Besse A. L., Mnogoobraziya Einshteina, T. 1, 2, Mir, M., 1990 | MR | Zbl

[4] Vorobev A. I., “Gruppovaya klassifikatsiya prostranstv Maksvella, dopuskayuschikh giperbolicheskie vinty”, Nauchnye trudy Ivanovskogo gos. un-ta. Matematika, 4, 2001, 35–42

[5] Vorobev A. I., “Klassifikatsiya potentsialnykh struktur, invariantnykh otnositelno giperbolicheskikh vintov”, Matematika i ee prilozheniya. Zhurnal Ivanovskogo mat. ob-va, 2004, no. 1, 41–50

[6] Ivanova A. S., Parinov M. A., “Pervye integraly uravnenii Lorentsa dlya nekotorykh klassov elektromagnitnykh polei”, Trudy MIRAN im. V. A. Steklova, 236, 2002, 197–203 | MR | Zbl

[7] Kosheleva N. A., Kuramshina A. K., Parinov M. A., “Gruppovaya klassifikatsiya prostranstv Maksvella, dopuskayuschikh ellipticheskie vinty”, Nauchnye trudy Ivanovskogo gos. un-ta. Matematika, 4, 2001, 73–82

[8] Landau L. D., Lifshits E. M., Teoriya polya, Nauka, M., 1967 | MR | Zbl

[9] Lvov D. A., Parinov M. A., “Gruppovaya klassifikatsiya prostranstv Maksvella, dopuskayuschikh parabolicheskoe vraschenie”, Nauchnye trudy Ivanovskogo gos. un-ta. Matematika, 5, 2002, 51–62

[10] Morozova E. V., Parinov M. A., “Gruppovaya klassifikatsiya prostranstv Maksvella, dopuskayuschikh translyatsii vdol izotropnykh pryamykh”, Nauchnye trudy Ivanovskogo gos. un-ta. Matematika, 4, 2001, 87–94

[11] Morokhova E. G., “Gruppovaya klassifikatsiya prostranstv Maksvella, dopuskayuschikh proportsionalnoe bivraschenie”, Nauchnye trudy Ivanovskogo gos. un-ta. Matematika, 5, 2002, 63–70

[12] Parinov M. A., “Zadacha gruppovoi klassifikatsii elektromagnitnykh polei”, Sovremennye metody teorii funktsii i smezhnye problemy, Tez. dokl. VZMSh, VGU, Voronezh, 1999, 156

[13] Parinov M. A., “Gruppovaya klassifikatsiya prostranstv Maksvella”, Sovremennyi analiz i ego prilozheniya, Tez. dokl. VZMSh, VGU, Voronezh, 2000, 129–130 | MR

[14] Parinov M. A., Prostranstva Einshteina–Maksvella i uravneniya Lorentsa, Izd-vo IvGU, Ivanovo, 2003

[15] Polezhaeva N. S., Parinov M. A., Gruppovaya klassifikatsiya 4-potentsialov, dopuskayuschikh parabolicheskie vrascheniya, Dep. v VINITI 31.07.2003, No 1489-V2003, IvGU, Ivanovo, 2003

[16] Bacry H., Combe Ph., Sorba P., “Connected subgroups of the Poincare group, I”, Rep. Math. Phys., 5:2 (1974), 145–186 | DOI | Zbl

[17] Bacry H., Combe Ph., Sorba P., “Connected subgroups of the Poincare group, II”, Rep. Math. Phys., 5:3 (1974), 361–392 | DOI | MR | Zbl

[18] Combe Ph., Sorba P., “Electromagnetic fields with symmetry”, Physica, A80:3 (1975), 271–286 | MR

[19] Janner A., Ascher E., “Space-time symmetry of linearly polarized electromagnetic plane waves”, Lett. Nuovo Cimento, 2:15 (1969), 703–705 | DOI

[20] Janner A., Ascher E., “Relativistic symmetry groups of uniform electromagnetic fields”, Physica, 48:3 (1970), 425–446 | DOI | MR

[21] Janner A., Ascher E., “Space-time symmetry of transverse electromagnetic plane waves”, Helv. Phys. Acta, 43:3 (1970), 296–303 | MR

[22] Parinov M. A., “Classes of Maxwell spaces admitting translations”, Proceedings of Intern. Conf. on Dynam. Systems and Diff. Equations, V. 10, Part 4, 2003, 157–166

[23] Vorob'ev A. I., “On the classification of Maxwell spaces admitting hyperbolic helices and first integrals of Lorentz equations”, Proceedings of Intern. Conf. on Dynam. Systems and Diff. Equations, V. 10, Part 4, 2003, 39–47