On the classification of conditionally integrable evolution systems in (1+1) dimensions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 1, pp. 243-253.

Voir la notice de l'article provenant de la source Math-Net.Ru

We generalize earlier results of Fokas and Liu and find all locally analytic (1+1)-dimensional evolution equations of order n that admit an N-shock-type solution with Nn+1. For this, we develop a refinement of the technique from our earlier work, where we completely characterized all (1+1)-dimensional evolution systems ut=F(x,t,u,u/x,,nu/xn) that are conditionally invariant under a given generalized (Lie–Bäcklund) vector field Q(x,t,u,u/x,,ku/xk)/u under the assumption that the system of ODEs Q=0 is totally nondegenerate. Every such conditionally invariant evolution system admits a reduction to a system of ODEs in t, thus being a nonlinear counterpart to quasi-exactly solvable models in quantum mechanics.
@article{FPM_2004_10_1_a11,
     author = {A. Sergyeyev},
     title = {On the classification of conditionally integrable evolution systems in $(1+1)$ dimensions},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {243--253},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2004},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/FPM_2004_10_1_a11/}
}
TY  - JOUR
AU  - A. Sergyeyev
TI  - On the classification of conditionally integrable evolution systems in $(1+1)$ dimensions
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2004
SP  - 243
EP  - 253
VL  - 10
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/FPM_2004_10_1_a11/
LA  - ru
ID  - FPM_2004_10_1_a11
ER  - 
%0 Journal Article
%A A. Sergyeyev
%T On the classification of conditionally integrable evolution systems in $(1+1)$ dimensions
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2004
%P 243-253
%V 10
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/FPM_2004_10_1_a11/
%G ru
%F FPM_2004_10_1_a11
A. Sergyeyev. On the classification of conditionally integrable evolution systems in $(1+1)$ dimensions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 1, pp. 243-253. https://geodesic-test.mathdoc.fr/item/FPM_2004_10_1_a11/

[1] Bocharov A. V., Verbovetskii A. M., Vinogradov A. M. i dr., Simmetrii i zakony sokhraneniya uravnenii matematicheskoi fiziki, eds. A. M. Vinogradov i I. S. Krasilschik, Faktorial, M., 1997

[2] Mikhailov A. V., Shabat A. B., Sokolov V. V., “Simmetriinyi podkhod k klassifikatsii integriruemykh uravnenii”, Integriruemost i kineticheskie uravneniya dlya solitonov, Naukova dumka, Kiev, 1990, 213–279 | MR

[3] Olver P., Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | Zbl

[4] Adler V. E., Gürel B., Gürses M., Habibullin I., “Boundary conditions for integrable equations”, J. Phys. A, 30:10 (1997), 3505–3513 | DOI | MR | Zbl

[5] Andreytsev A., “Classification of systems of nonlinear evolution equations admitting higher-order conditional symmetries”, Proc. 4th Int. Conf. Symmetry in Nonlinear Mathematical Physics, Part 1 (Kyiv, 2001), Institute of Mathematics, Kyiv, 2002, 72–79 | MR | Zbl

[6] Basarab-Horwath P., Zhdanov R. Z., “Initial-value problems for evolutionary partial differential equations and higher-order conditional symmetries”, J. Math. Phys., 42:1 (2001), 376–389 | DOI | MR | Zbl

[7] Fokas A. S., Liu Q. M., “Generalized conditional symmetries and exact solutions of non-integrable equations”, Theoret. and Math. Phys., 99 (1994), 571–582 | DOI | MR | Zbl

[8] Fokas A. S., Liu Q. M., “Nonlinear interaction of traveling waves of nonintegrable equations”, Phys. Rev. Lett., 72 (1994), 3293–3296 | DOI | MR | Zbl

[9] Kamran N., Milson N., Olver P., “Invariant modules and the reduction of nonlinear partial differential equations to dynamical systems”, Adv. Math., 156:2 (2000), 286–319 | DOI | MR | Zbl

[10] Rubin J., Winternitz P., “Point symmetries of conditionally integrable nonlinear evolution equations”, J. Math. Phys., 31 (1990), 2085–2090 | DOI | MR | Zbl

[11] Samokhin A. V., “Symmetries of linear and linearizable systems of differential equations”, Acta Appl. Math., 56 (1999), 253–300 | DOI | MR | Zbl

[12] Samokhin A. V., “Full symmetry algebra for ODEs and control systems”, Acta Appl. Math., 72:1–2 (2002), 87–99 | DOI | MR | Zbl

[13] Sergyeyev A., “Constructing conditionally integrable evolution systems in $(1+1)$ dimensions: a generalization of invariant modules approach”, J. Phys. A, 35:35 (2002), 7653–7660 | DOI | MR | Zbl

[14] Svirshchevskii S. R., “Lie–Bäcklund symmetries of linear ODEs and invariant linear spaces”, Modern Group Analysis, MFTI, Moscow, 1993, 75–83

[15] Zhdanov R. Z., “Conditional Lie–Bäcklund symmetry and reduction of evolution equations”, J. Phys. A, 28 (1995), 3841–3850 | DOI | MR | Zbl

[16] Zhdanov R. Z., “Higher conditional symmetries and reduction of initial value problems for nonlinear evolution equations”, Proc. Int. Conf. Symmetry in Nonlinear Mathematical Physics, Part 1 (Kyiv, 1999), Institute of Mathematics, Kyiv, 2000, 255–263 | MR | Zbl

[17] Zhdanov R. Z., “Higher conditional symmetry and reduction of initial value problems”, Nonlinear Dynam., 28 (2002), 17–27 | DOI | MR | Zbl