Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2004_10_1_a11, author = {A. Sergyeyev}, title = {On the classification of conditionally integrable evolution systems in $(1+1)$ dimensions}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {243--253}, publisher = {mathdoc}, volume = {10}, number = {1}, year = {2004}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/FPM_2004_10_1_a11/} }
TY - JOUR AU - A. Sergyeyev TI - On the classification of conditionally integrable evolution systems in $(1+1)$ dimensions JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2004 SP - 243 EP - 253 VL - 10 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/FPM_2004_10_1_a11/ LA - ru ID - FPM_2004_10_1_a11 ER -
A. Sergyeyev. On the classification of conditionally integrable evolution systems in $(1+1)$ dimensions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 1, pp. 243-253. https://geodesic-test.mathdoc.fr/item/FPM_2004_10_1_a11/
[1] Bocharov A. V., Verbovetskii A. M., Vinogradov A. M. i dr., Simmetrii i zakony sokhraneniya uravnenii matematicheskoi fiziki, eds. A. M. Vinogradov i I. S. Krasilschik, Faktorial, M., 1997
[2] Mikhailov A. V., Shabat A. B., Sokolov V. V., “Simmetriinyi podkhod k klassifikatsii integriruemykh uravnenii”, Integriruemost i kineticheskie uravneniya dlya solitonov, Naukova dumka, Kiev, 1990, 213–279 | MR
[3] Olver P., Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | Zbl
[4] Adler V. E., Gürel B., Gürses M., Habibullin I., “Boundary conditions for integrable equations”, J. Phys. A, 30:10 (1997), 3505–3513 | DOI | MR | Zbl
[5] Andreytsev A., “Classification of systems of nonlinear evolution equations admitting higher-order conditional symmetries”, Proc. 4th Int. Conf. Symmetry in Nonlinear Mathematical Physics, Part 1 (Kyiv, 2001), Institute of Mathematics, Kyiv, 2002, 72–79 | MR | Zbl
[6] Basarab-Horwath P., Zhdanov R. Z., “Initial-value problems for evolutionary partial differential equations and higher-order conditional symmetries”, J. Math. Phys., 42:1 (2001), 376–389 | DOI | MR | Zbl
[7] Fokas A. S., Liu Q. M., “Generalized conditional symmetries and exact solutions of non-integrable equations”, Theoret. and Math. Phys., 99 (1994), 571–582 | DOI | MR | Zbl
[8] Fokas A. S., Liu Q. M., “Nonlinear interaction of traveling waves of nonintegrable equations”, Phys. Rev. Lett., 72 (1994), 3293–3296 | DOI | MR | Zbl
[9] Kamran N., Milson N., Olver P., “Invariant modules and the reduction of nonlinear partial differential equations to dynamical systems”, Adv. Math., 156:2 (2000), 286–319 | DOI | MR | Zbl
[10] Rubin J., Winternitz P., “Point symmetries of conditionally integrable nonlinear evolution equations”, J. Math. Phys., 31 (1990), 2085–2090 | DOI | MR | Zbl
[11] Samokhin A. V., “Symmetries of linear and linearizable systems of differential equations”, Acta Appl. Math., 56 (1999), 253–300 | DOI | MR | Zbl
[12] Samokhin A. V., “Full symmetry algebra for ODEs and control systems”, Acta Appl. Math., 72:1–2 (2002), 87–99 | DOI | MR | Zbl
[13] Sergyeyev A., “Constructing conditionally integrable evolution systems in $(1+1)$ dimensions: a generalization of invariant modules approach”, J. Phys. A, 35:35 (2002), 7653–7660 | DOI | MR | Zbl
[14] Svirshchevskii S. R., “Lie–Bäcklund symmetries of linear ODEs and invariant linear spaces”, Modern Group Analysis, MFTI, Moscow, 1993, 75–83
[15] Zhdanov R. Z., “Conditional Lie–Bäcklund symmetry and reduction of evolution equations”, J. Phys. A, 28 (1995), 3841–3850 | DOI | MR | Zbl
[16] Zhdanov R. Z., “Higher conditional symmetries and reduction of initial value problems for nonlinear evolution equations”, Proc. Int. Conf. Symmetry in Nonlinear Mathematical Physics, Part 1 (Kyiv, 1999), Institute of Mathematics, Kyiv, 2000, 255–263 | MR | Zbl
[17] Zhdanov R. Z., “Higher conditional symmetry and reduction of initial value problems”, Nonlinear Dynam., 28 (2002), 17–27 | DOI | MR | Zbl