Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2004_10_1_a10, author = {M. Pobo\v{r}il}, title = {A~new hyperbolic equation possessing a~zero-curvature representation}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {239--241}, publisher = {mathdoc}, volume = {10}, number = {1}, year = {2004}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/FPM_2004_10_1_a10/} }
M. Pobořil. A~new hyperbolic equation possessing a~zero-curvature representation. Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 1, pp. 239-241. https://geodesic-test.mathdoc.fr/item/FPM_2004_10_1_a10/
[1] Zhiber A. V., Sokolov V. V., “Novyi primer giperbolicheskogo nelineinogo uravneniya, obladayuschego integralami”, Teor. i matem. fiz., 120 (1999), 20–26 | MR | Zbl
[2] Beals R., Rabelo M., Tenenblat K., “Bäcklund transformations and inverse scattering solutions for some pseudospherical surface equations”, Stud. Appl. Math., 8 (1989), 125–151 | MR
[3] Marvan M., “A direct procedure to compute zero-curvature representations. The case $\mathfrak{sl}_2$”, Secondary Calculus and Cohomological Physics, Proc. Conf. (Moscow, 1997), 1998, 10 ; arXiv: /www.emis.de/proceedings/SCCP97 | MR | Zbl
[4] Marvan M., Jets. A software for differential calculus on jet spaces and diffieties, ver. 4.9 (December 2003) for Maple V Release 4, Opava, 2003 | Zbl