A~new hyperbolic equation possessing a~zero-curvature representation
Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 1, pp. 239-241.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using a direct procedure to compute a zero-curvature representation (ZCR) we find a previously unknown hyperbolic equation which possesses an sl2-valued ZCR. This ZCR admits no parameter and is not reducible to a proper subalgebra of sl2.
@article{FPM_2004_10_1_a10,
     author = {M. Pobo\v{r}il},
     title = {A~new hyperbolic equation possessing a~zero-curvature representation},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {239--241},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2004},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/FPM_2004_10_1_a10/}
}
TY  - JOUR
AU  - M. Pobořil
TI  - A~new hyperbolic equation possessing a~zero-curvature representation
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2004
SP  - 239
EP  - 241
VL  - 10
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/FPM_2004_10_1_a10/
LA  - ru
ID  - FPM_2004_10_1_a10
ER  - 
%0 Journal Article
%A M. Pobořil
%T A~new hyperbolic equation possessing a~zero-curvature representation
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2004
%P 239-241
%V 10
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/FPM_2004_10_1_a10/
%G ru
%F FPM_2004_10_1_a10
M. Pobořil. A~new hyperbolic equation possessing a~zero-curvature representation. Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 1, pp. 239-241. https://geodesic-test.mathdoc.fr/item/FPM_2004_10_1_a10/

[1] Zhiber A. V., Sokolov V. V., “Novyi primer giperbolicheskogo nelineinogo uravneniya, obladayuschego integralami”, Teor. i matem. fiz., 120 (1999), 20–26 | MR | Zbl

[2] Beals R., Rabelo M., Tenenblat K., “Bäcklund transformations and inverse scattering solutions for some pseudospherical surface equations”, Stud. Appl. Math., 8 (1989), 125–151 | MR

[3] Marvan M., “A direct procedure to compute zero-curvature representations. The case $\mathfrak{sl}_2$”, Secondary Calculus and Cohomological Physics, Proc. Conf. (Moscow, 1997), 1998, 10 ; arXiv: /www.emis.de/proceedings/SCCP97 | MR | Zbl

[4] Marvan M., Jets. A software for differential calculus on jet spaces and diffieties, ver. 4.9 (December 2003) for Maple V Release 4, Opava, 2003 | Zbl