Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2003_9_1_a7, author = {A. \`E. Guterman and A. V. Mikhalev}, title = {General algebra and linear transformations preserving matrix invariants}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {83--101}, publisher = {mathdoc}, volume = {9}, number = {1}, year = {2003}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/FPM_2003_9_1_a7/} }
TY - JOUR AU - A. È. Guterman AU - A. V. Mikhalev TI - General algebra and linear transformations preserving matrix invariants JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2003 SP - 83 EP - 101 VL - 9 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/FPM_2003_9_1_a7/ LA - ru ID - FPM_2003_9_1_a7 ER -
A. È. Guterman; A. V. Mikhalev. General algebra and linear transformations preserving matrix invariants. Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 1, pp. 83-101. https://geodesic-test.mathdoc.fr/item/FPM_2003_9_1_a7/
[1] Artin E., Geometricheskaya algebra, Nauka, M., 1969 | MR | Zbl
[2] Gelfand I. M., Retakh V. S., “Determinanty matrits nad nekommutativnymi koltsami”, Funktsionalnyi analiz i ego prilozheniya, 25 (1991), 91–102 | MR
[3] Guterman A. E., Kreines E. M., Mikhalev A. V., “Rezultaty frobeniusovskogo tipa dlya matrits nad telami”, Trudy pyatykh matematicheskikh chtenii MGSU, 1997, 119–133
[4] Dynkin E. B., “Maksimalnye podgruppy klassicheskikh grupp”, Trudy MMO, 1, 1952, 39–166 | MR | Zbl
[5] Banning R., Mathieu M., “Commutativity preserving mappings on semiprime rings”, Comm. Algebra, 25 (1997), 247–265 | DOI | MR | Zbl
[6] Beasley L., “Linear operators on matrices: The invariance of rank-$k$ matrices”, Linear Algebra Appl., 107 (1988), 161–167 | DOI | MR | Zbl
[7] Beidar K. I., “On functional identities and commuting additive mappings”, Comm. Algebra, 26 (1998), 1819–1850 | DOI | MR | Zbl
[8] Beidar K. I., Brešar M., Chebotar M. A., “Jordan isomorphisms of triangular matrix algebras over a connected commutative ring” (to appear)
[9] Belitskii G. R., Lyubich Yu. I., Matrix Norms and their Applications, Oper. Theory Adv. Appl., 36, Birkhäuser, Boston, 1988 | MR | Zbl
[10] Botta P., Pierce S., Watkins W., “Linear transformations that preserve the nilpotent matrices”, Pacific J. Math., 104 (1983), 39–46 | MR | Zbl
[11] Brešar M., “Commuting traces on beadditive mappings, commutativity preserving mappings, and Lie mappings”, Trans. Amer. Math. Soc., 335 (1993), 525–546 | DOI | MR | Zbl
[12] Brešar M., “Functional identities: A survey”, Contemporary Math. (to appear)
[13] Choi M. D., Jafarian A. A., Radjavi H., “Linear maps preserving commutativity”, Linear Algebra Appl., 87 (1987), 227–242 | DOI | MR
[14] Dedekind R., Gesammelte Mathematische Werke, V. II, Chelsea, New York, 1969
[15] Dieudonné J., “Les déterminants sur un corps non commutatif”, Bull. Soc. Math. Fr., 71 (1943), 27–45 | MR | Zbl
[16] Dieudonné J., “Sur une généralisation du groupe orthogonal à quatre variables”, Arch. Math., 1 (1949), 282–287 | DOI | MR | Zbl
[17] Dixon J. D., “Rigid embedding of simple groups in the general linear group”, Canad. J. Math., 29 (1977), 384–391 | DOI | MR | Zbl
[18] Doković D. Z., Li C. K., “Overgroups of some classical linear groups with applications to linear preserver problems”, Linear Algebra Appl., 197–198 (1994), 31–62 | DOI | MR
[19] Draxl P. K., Skew Fields, London Mathematical Society Lecture Note Series, 81, 1982 | MR
[20] Formanek E., Sibley D., “The group determinant determines the group”, Proc. Amer. Math. Soc., 112 (1991), 649–656 | DOI | MR | Zbl
[21] Frobenius G., Teoriya kharakterov i predstavlenii grupp, Gos. nauch. tekhn. izd. Ukrainy, Kharkov, 1937
[22] Gelfand I. M., Retah V. S., “A theory of noncommutative determinants and characteristic functions of graphs”, Funct. Anal. Appl., 26 (1992), 1–20 ; Publ. LACIM, UQAM, Montreal, 14, 1–26 | DOI | MR
[23] Guralnick R. M., “Invertible preservers and algebraic groups”, Linear Algebra Appl., 212–213 (1994), 249–257 | DOI | MR | Zbl
[24] Guralnick R. M., “Invertible preservers and algebraic groups. II. Preservers of similarity invariants and overgroups of $PSL_n(\mathbf F)$”, Linear and Multilinear Algebra, 43 (1997), 221–255 | DOI | MR | Zbl
[25] Guralnik R. M., Li C.-K., “Invertible preservers and algebraic groups. II: Preservers of unitary similarity (congruence) invariants and overgroups of some unitary subgroups”, Linear and Multilinear Algebra, 43 (1997), 257–282 | DOI | MR
[26] Guterman A., “Frobenius type theorems in the noncommutative case”, Linear and Multilinear Algebra, 48:4 (2001), 293–312 | DOI | MR
[27] Guterman A., “Linear preservers for Drazin star partial order”, Comm. Algebra, 29:9 (2001), 3905–3917 | DOI | MR | Zbl
[28] Guterman A., “Linear preservers for matrix inequalities and partial orderings”, Linear Algebra Appl., 331:1–3 (2001), 75–87 | DOI | MR | Zbl
[29] Guterman A., “Singularity preservers over local domains”, Journal of Mathematical Sciences, 102:6 (2000), 4591–4597 | MR | Zbl
[30] Guterman A., Li C.-K., Šemrl P., “Some general techniques on linear preserver problems”, Linear Algebra Appl., 315 (2000), 61–81 | DOI | MR | Zbl
[31] Guterman A. E., Mikhalev A. V., “Frobenius Type Theorems”, Proceedings of Workshop on General Algebra and Discrete Mathematics, 1998, Shaker-Verlag Aachen, Germany, Potsdam, 1999, 102–112
[32] Guterman A., Mikhalev A. V., “On determinant preservers over noncommutative Principal Ideal Domains”, Lie Algebras, Rings, and Related Topics, Springer-Verlag, Hong Kong, 2000, 49–60 | MR | Zbl
[33] Hiai F., “Similarity preserving linear maps on matrices”, Linear Algebra Appl., 97 (1987), 127–139 | DOI | MR | Zbl
[34] “Hoehnke H.-J.”, Math. Nahr., 1967, no. 34, 229–255 | MR | Zbl
[35] Horn R., Li C.-K., Tsing N. K., “Linear operators preserving certain equivalence relations on matrices”, SIAM J. Matrix Analysis Appl., 12 (1991), 195–204 | DOI | MR | Zbl
[36] Hua L. K., “A theorem on matrices over a sfield and its applications”, J. Chinese Math. Soc. N. S., 1 (1951), 110–163 | MR
[37] Hua L. K., Selected Papers, ed. Halberstam H., Springer-Verlag, New York, Heidelberg, Berlin, 1983 | MR
[38] Jacobson N., Finite-Dimensional Division Algebras over the Fields, Springer-Verlag, New York, Heidelberg, Berlin, 1996 | MR | Zbl
[39] Jacobson N., “Generic norm of an algebra”, Osaca J. Math., 15 (1953), 25–53 | MR
[40] James D. G., “On the automorphisms of $\det(x_{ij})$”, Math. Chronicle, 9 (1980), 35–40 | MR | Zbl
[41] Jensen C. U., Lenzing H., Model Theoretic Algebra with particular emphasis on fields, rings, modules, Algebra, Logic and Applications, 2, Gordon and Breach Science Publishers, New York, 1994 | MR
[42] Johnson K. W., “Latin square determinants, II”, Discrete Mathematics, 105 (1992), 111–130 | DOI | MR | Zbl
[43] Kovacs A., “Trace preserving linear transformations on matrix algebras”, Linear and Multilinear Algebra, 4 (1976/1977), 243–250 | DOI | MR
[44] Lee T.-K., Lee T.-C., “Commuting additive mappings in semiprime rings”, Bull. Inst. Math. Acad. Sinica, 24 (1996), 259–268 | MR | Zbl
[45] Li C.-K., “Norms, isometries and isometry groups”, Amer. Math. Monthly, 107 (2000), 334–340 | DOI | MR | Zbl
[46] Li C.-K., Rodman L., Tsing N. K., “Linear operators preserving certain equivalence relations originating from system theory”, Linear Algebra Appl., 161–165 (1992), 165–225 | DOI | MR | Zbl
[47] Li C.-K., Tsing N. K., “Duality between some linear preserver problems: The inveriance of the $C$-numerical range, the $C$-numerical radius and certain matrix sets”, Linear and Multilinear Algebra, 23 (1988), 353–362 | DOI | MR | Zbl
[48] Li C.-K., Tsing N. K., “Duality between some linear preserver problems. II: Isometries with respect to $c$-spectral norms and matrices with fixed singular values”, Linear Algebra Appl., 110 (1988), 181–212 | MR | Zbl
[49] Li C.-K., Tsing N. K., “Linear preserver problems: A brief introduction and some special techniques”, Linear Algebra Appl., 162–164 (1992), 217–235 | DOI | MR | Zbl
[50] Loewy R., Radwan N., “Spaces of symmetric matrices of bounded rank”, Linear Algebra Appl., Second Conference of the International Linear Algebra Society (ILAS) (Lisbon, 1992), 197–198, 1994, 189–215 | MR | Zbl
[51] Man W. Y., “The invariance of $C$-numerical range, $C$-numerical radius and their dual problems”, Linear and Multilinear Algebra, 30 (1991), 117–128 | DOI | MR | Zbl
[52] Marcus M., “Linear transformations on matrices”, J. Res. Nat. Bur. Stds., 75B (1971), 107–113 | MR | Zbl
[53] Marcus M., May F., “On a theorem of I. Schur concerning matrix transformations”, Arch. Math., 11 (1960), 27–30 | MR
[54] Marcus M., Moyls B., “Linear transformations on algebras of matrices”, Canad. J. Math., 11 (1959), 61–66 | DOI | MR | Zbl
[55] Marcus M., Moyls B., “Transformations on tensor product spaces”, Pacific J. Math., 9 (1959), 1215–1221 | MR | Zbl
[56] Marcus M., Purves R., “Linear transformations on algebras of matrices. II: The invariance of the elementary symmetric functions”, Canad. J. Math., 11 (1959), 383–396 | DOI | MR | Zbl
[57] McDonald B., “$R$-linear endomorphisms of $(R)_n$ preserving invariants”, AMS Memoirs, 287, 1983, 46 | MR
[58] Mikhalev A. V., “Isomorphisms and anti-isomorphisms of endomorphism rings of modules”, First International Tainan–Moscow Algebra Workshop, Walter de Gruyter, Berlin, New York, 1995, 69–122 | MR
[59] Milnor J., Introduction to Algebraic $K$-Theory, Prinston University Press and University of Tokyo Press, 1971 | MR
[60] Omladič M., Šemrl P., “Preserving Diagonalisability”, Linear Algebra Appl., 285 (1998), 165–179 | DOI | MR | Zbl
[61] Pierce S., “Discriminant preserving linear maps”, Linear and Multilinear Algebra, 8 (1979), 101–114 | DOI | MR | Zbl
[62] Pierce S. and others., “A survey of linear preserver problems”, Linear and Multilinear Algebra, 33 (1992), 1–119 | Zbl
[63] Platonov V. P., Doković D. Z., “Linear preserver problems and algebraic groups”, Math. Ann., 303 (1995), 165–184 | DOI | MR | Zbl
[64] Robinson A., Introduction to Model Theory and to the Metamathematics of Algebra, North-Holland Publishing Company, Amsterdam, 1963 | MR | Zbl
[65] Rosenberg J., Algebraic $K$-Theory and its Applications, Springer-Verlag, New York, Berlin, 1994 | MR
[66] Schur I., “Einige Bemerkungen zur Determinantentheorie”, Sitzungsberichte Akad. Berlin, 1925 (1925), 454–463 | Zbl
[67] Wan Z.-X., Geometry of Matrices, World Scientific, Singapore, New Jersey, London, Hong Kong, 1996 | MR
[68] Waterhouse W. C., “Automorphisms of $\det(x_{ij})$: The group scheme approach”, Adv. Math., 65 (1987), 171–203 | DOI | MR | Zbl
[69] Waterhouse W. C., Introduction to Affine Group Schemes, Graduate Text in Math., 66, Springer-Verlag, New York, 1979 | MR | Zbl
[70] Waterhouse W. C., “Invertibility of linear maps preserving matrix invariants”, Linear and Multilinear Algebra, 13 (1983), 105–113 | DOI | MR | Zbl
[71] Waterhouse W. C., “Linear maps preserving reduced norms”, Linear Alg. Appl., 43 (1982), 197–200 | DOI | MR | Zbl
[72] Watkins W., “Linear maps that preserve commuting pairs of matrices”, Linear Algebra Appl., 14 (1976), 29–35 | DOI | MR | Zbl
[73] Westwick R., “Spaces of matrices of fixed rank”, Linear and Multilinear Algebra, 20 (1987), 171–174 | DOI | MR | Zbl
[74] Westwick R., “Transformations on tensor spaces”, Pacific J. of Math., 23:3 (1967), 613–620 | MR | Zbl
[75] Wong W. J., “Maps on simple algebras preserving zero products. I: The associative case”, Pacific J. Math., 89 (1980), 229–247 | MR | Zbl
[76] Wong W. J., “Maps on simple algebras preserving zero products. II: Lie algebras of linear type”, Pacific J. Math., 92 (1981), 469–487 | MR
[77] Wong W. J., “Maps on spaces of linear transformations”, Math. Chronicle, 16 (1987), 15–24 | MR | Zbl
[78] Wong W. J., “Rank $1$ preserving maps on linear transformations over noncommutative local rings”, J. Algebra, 113 (1988), 263–293 | DOI | MR | Zbl