Constructing real canonical forms of Hamiltonian matrices with two imaginary eigenvalues
Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 3, pp. 687-716.

Voir la notice de l'article provenant de la source Math-Net.Ru

If A is a Hamiltonian matrix and P a symplectic matrix then the product P1AP is a Hamiltonian matrix. In this paper we consider the case where the matrix A has a pair of imaginary eigenvalues and develop an algorithm which finds a matrix P such that the matrix P1AP has a particularly simple form, a canonical form.
@article{FPM_1999_5_3_a3,
     author = {R. Coleman},
     title = {Constructing real canonical forms of {Hamiltonian} matrices with two imaginary eigenvalues},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {687--716},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {1999},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/FPM_1999_5_3_a3/}
}
TY  - JOUR
AU  - R. Coleman
TI  - Constructing real canonical forms of Hamiltonian matrices with two imaginary eigenvalues
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1999
SP  - 687
EP  - 716
VL  - 5
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/FPM_1999_5_3_a3/
LA  - ru
ID  - FPM_1999_5_3_a3
ER  - 
%0 Journal Article
%A R. Coleman
%T Constructing real canonical forms of Hamiltonian matrices with two imaginary eigenvalues
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1999
%P 687-716
%V 5
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/FPM_1999_5_3_a3/
%G ru
%F FPM_1999_5_3_a3
R. Coleman. Constructing real canonical forms of Hamiltonian matrices with two imaginary eigenvalues. Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 3, pp. 687-716. https://geodesic-test.mathdoc.fr/item/FPM_1999_5_3_a3/