The Kadomtsev--Petviashvili hierarchy and the Schottky problem
Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 1, pp. 367-460.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is based on a special course delivered by the author in the Independent Moscow university. It contains a detailed explanation of several interrelations between soliton equations, infinite dimensional Grassmann manifold and jacobians of the algebraic curves. All these permit one to prove the (weakened) version of S. P. Novikov's conjecture (based on I. M. Krichever's results) on characterization of jacobians among all abelian tori by cheking whether the (corrected) theta-function of the given abelian variety is a solution of the Kadomtsev–Petviashvili non-linear differential equation.
@article{FPM_1998_4_1_a25,
     author = {E. E. Demidov},
     title = {The {Kadomtsev--Petviashvili} hierarchy and the {Schottky} problem},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {367--460},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {1998},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/FPM_1998_4_1_a25/}
}
TY  - JOUR
AU  - E. E. Demidov
TI  - The Kadomtsev--Petviashvili hierarchy and the Schottky problem
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1998
SP  - 367
EP  - 460
VL  - 4
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/FPM_1998_4_1_a25/
LA  - ru
ID  - FPM_1998_4_1_a25
ER  - 
%0 Journal Article
%A E. E. Demidov
%T The Kadomtsev--Petviashvili hierarchy and the Schottky problem
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1998
%P 367-460
%V 4
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/FPM_1998_4_1_a25/
%G ru
%F FPM_1998_4_1_a25
E. E. Demidov. The Kadomtsev--Petviashvili hierarchy and the Schottky problem. Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 1, pp. 367-460. https://geodesic-test.mathdoc.fr/item/FPM_1998_4_1_a25/