On a 3D-Hypersingular Equation of a Problem for a Crack
Fractional Calculus and Applied Analysis, Tome 14 (2011) no. 1, p. 19.

Voir la notice de l'article dans European Digital Mathematics Library

MSC 2010: 45DB05, 45E05, 78A45We show that a certain axisymmetric hypersingular integral equation arising in problems of cracks in the elasticity theory may be explicitly solved in the case where the crack occupies a plane circle. We give three different forms of the resolving formula. Two of them involve regular kernels, while the third one involves a singular kernel, but requires less regularity assumptions on the the right-hand side of the equation.
Classification : 74G05, 78A45, 74R10, 45E05
Mots-clés : Fractional Operator, Hypersingular Integrals, Diffraction, Cracks, Potential Kernel, Singular Operator, fractional operator, hypersingular integrals, diffraction
@article{FCAA_2011__14_1_219572,
     author = {Samko, Stefan},
     title = {On a {3D-Hypersingular} {Equation} of a {Problem} for a {Crack}},
     journal = {Fractional Calculus and Applied Analysis},
     pages = {19},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2011},
     zbl = {1273.74099},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/FCAA_2011__14_1_219572/}
}
TY  - JOUR
AU  - Samko, Stefan
TI  - On a 3D-Hypersingular Equation of a Problem for a Crack
JO  - Fractional Calculus and Applied Analysis
PY  - 2011
SP  - 19
VL  - 14
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/FCAA_2011__14_1_219572/
LA  - en
ID  - FCAA_2011__14_1_219572
ER  - 
%0 Journal Article
%A Samko, Stefan
%T On a 3D-Hypersingular Equation of a Problem for a Crack
%J Fractional Calculus and Applied Analysis
%D 2011
%P 19
%V 14
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/FCAA_2011__14_1_219572/
%G en
%F FCAA_2011__14_1_219572
Samko, Stefan. On a 3D-Hypersingular Equation of a Problem for a Crack. Fractional Calculus and Applied Analysis, Tome 14 (2011) no. 1, p. 19. https://geodesic-test.mathdoc.fr/item/FCAA_2011__14_1_219572/