Hilbert-Smith Conjecture for K - Quasiconformal Groups
Fractional Calculus and Applied Analysis, Tome 13 (2010) no. 5, p. 507.
Voir la notice de l'article dans European Digital Mathematics Library
MSC 2010: 30C60A more general version of Hilbert's fifth problem, called the Hilbert-Smith conjecture, asserts that among all locally compact topological groups only Lie groups can act effectively on finite-dimensional manifolds. We give a solution of the Hilbert-Smith Conjecture for K - quasiconformal groups acting on domains in the extended n - dimensional Euclidean space.
Classification :
22D05, 22E30, 30C65
Mots-clés : Quasiconformal Group, Lie Group, Locally Compact Group, Hilbert-Smith Conjecture, Hilbert-Smith conjecture, quasiconformal groups, Lie group, locally compact group
Mots-clés : Quasiconformal Group, Lie Group, Locally Compact Group, Hilbert-Smith Conjecture, Hilbert-Smith conjecture, quasiconformal groups, Lie group, locally compact group
@article{FCAA_2010__13_5_219626, author = {Gong, Jianhua}, title = {Hilbert-Smith {Conjecture} for {K} - {Quasiconformal} {Groups}}, journal = {Fractional Calculus and Applied Analysis}, pages = {507}, publisher = {mathdoc}, volume = {13}, number = {5}, year = {2010}, zbl = {1244.30038}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/FCAA_2010__13_5_219626/} }
Gong, Jianhua. Hilbert-Smith Conjecture for K - Quasiconformal Groups. Fractional Calculus and Applied Analysis, Tome 13 (2010) no. 5, p. 507. https://geodesic-test.mathdoc.fr/item/FCAA_2010__13_5_219626/