Hilbert-Smith Conjecture for K - Quasiconformal Groups
Fractional Calculus and Applied Analysis, Tome 13 (2010) no. 5, p. 507.

Voir la notice de l'article dans European Digital Mathematics Library

MSC 2010: 30C60A more general version of Hilbert's fifth problem, called the Hilbert-Smith conjecture, asserts that among all locally compact topological groups only Lie groups can act effectively on finite-dimensional manifolds. We give a solution of the Hilbert-Smith Conjecture for K - quasiconformal groups acting on domains in the extended n - dimensional Euclidean space.
Classification : 22D05, 22E30, 30C65
Mots-clés : Quasiconformal Group, Lie Group, Locally Compact Group, Hilbert-Smith Conjecture, Hilbert-Smith conjecture, quasiconformal groups, Lie group, locally compact group
@article{FCAA_2010__13_5_219626,
     author = {Gong, Jianhua},
     title = {Hilbert-Smith {Conjecture} for {K} - {Quasiconformal} {Groups}},
     journal = {Fractional Calculus and Applied Analysis},
     pages = {507},
     publisher = {mathdoc},
     volume = {13},
     number = {5},
     year = {2010},
     zbl = {1244.30038},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/FCAA_2010__13_5_219626/}
}
TY  - JOUR
AU  - Gong, Jianhua
TI  - Hilbert-Smith Conjecture for K - Quasiconformal Groups
JO  - Fractional Calculus and Applied Analysis
PY  - 2010
SP  - 507
VL  - 13
IS  - 5
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/FCAA_2010__13_5_219626/
LA  - en
ID  - FCAA_2010__13_5_219626
ER  - 
%0 Journal Article
%A Gong, Jianhua
%T Hilbert-Smith Conjecture for K - Quasiconformal Groups
%J Fractional Calculus and Applied Analysis
%D 2010
%P 507
%V 13
%N 5
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/FCAA_2010__13_5_219626/
%G en
%F FCAA_2010__13_5_219626
Gong, Jianhua. Hilbert-Smith Conjecture for K - Quasiconformal Groups. Fractional Calculus and Applied Analysis, Tome 13 (2010) no. 5, p. 507. https://geodesic-test.mathdoc.fr/item/FCAA_2010__13_5_219626/