Comparison of powers of differential polynomials
Eurasian mathematical journal, Tome 14 (2023) no. 4, pp. 23-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient conditions are obtained for a polynomial P to be more powerful then a polynomial Q. These conditions are formulated in terms of the orders of generalized-homogeneous sub-polynomials, corresponding to these polynomials, and the multiplicity of their zeros. Applying these results, conditions are obtained, under which a monomial ξv for a certain set of multi-indices vR can be estimated via terms of a given degenerate polynomial P.
@article{EMJ_2023_14_4_a3,
     author = {H. G. Ghazaryan},
     title = {Comparison of powers of differential polynomials},
     journal = {Eurasian mathematical journal},
     pages = {23--46},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2023},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/EMJ_2023_14_4_a3/}
}
TY  - JOUR
AU  - H. G. Ghazaryan
TI  - Comparison of powers of differential polynomials
JO  - Eurasian mathematical journal
PY  - 2023
SP  - 23
EP  - 46
VL  - 14
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/EMJ_2023_14_4_a3/
LA  - en
ID  - EMJ_2023_14_4_a3
ER  - 
%0 Journal Article
%A H. G. Ghazaryan
%T Comparison of powers of differential polynomials
%J Eurasian mathematical journal
%D 2023
%P 23-46
%V 14
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/EMJ_2023_14_4_a3/
%G en
%F EMJ_2023_14_4_a3
H. G. Ghazaryan. Comparison of powers of differential polynomials. Eurasian mathematical journal, Tome 14 (2023) no. 4, pp. 23-46. https://geodesic-test.mathdoc.fr/item/EMJ_2023_14_4_a3/

[1] Akademic Verlag, Berlin, 1955 | MR

[2] G. C. Barozzi, “Sul prodotto di polinomi quasi-ellittici”, Bolletino dell'Unione Matematica Italiana, 20:3 (1965), 169–176 | MR | Zbl

[3] D. Calvo, Multianizotropic Gevrey classes and Caushy problem, Ph. D. Thesis in Mathematics, Universita degli Studi di Pisa, 2000

[4] L. Cattabriga, “Su una classi di polinomi ipoellitici”, Rendiconti del Seminario Matematico della Universita Padova, 36 (1966), 285–309 | MR | Zbl

[5] L. Cattabriga, “Uno spazio funzionale connesso ad una classe di operatori ipoellittici”, Symposia Mat, Inst.Naz. Alta Mat., Bologna, 7 (1971), 547–558 | MR | Zbl

[6] A. Corli, “Un teorema di rappresentazione per certe classi generelizzate di Gevrey”, Boll.Un. Mat. It., Serie, 6, 4C:1 (1985), 245–257 | Zbl

[7] J. Friberg, “Multi quasielliptic polynomials”, Annali della Scuola Normale Superiore di Pisa, 21:3 (1967), 239–260 | MR | Zbl

[8] H. G. Ghazaryan, “On almost hypoelliptic polynomials increasing at infinity”, Journal of Contemporary Math. Analysis, 46:6 (2011), 13–30 | DOI | MR

[9] M. Gevre, “Sur la nature analitique des solutions des equations aux derivatives partielles”, Ann. Ec. Norm. Sup., Paris, 35 (1918), 129–190 | DOI | MR

[10] Trans. Moscow Math. Soc., 31 (1974) | MR | Zbl

[11] L. Gárding, “Linear hyperbolic partial differential equations with constant coefficients”, Acta Math., 85 (1951), 1–62 | DOI | MR | Zbl

[12] L. Hörmander, The analysis of linear partial differential operators, v. I, II, Springer Verlag, 1983 | MR

[13] V. Ya. Ivri, “Well posedness in Gevrey class of the Cauchy problem for non strictly hyperbolic equation”, Math. Sb., 96:138 (1975), 390–413 (in Russian) | MR | Zbl

[14] V. Ya. Ivri, Linear hyperbolic equations, Partial Differential Equations, 33, Springer, 2001

[15] K. Kajitani, “Cauchy problem for non-strictly hyperbolic systems”, Pull. Res. Inst. Math. Sci., 15:2 (1979), 519–550 | DOI | MR | Zbl

[16] Steklov Inst. Math., 150:4 (1981), 151–167 | MR | MR | Zbl

[17] G. G. Kazaryan, “Estimates of differential operators and hypoelliptic operators”, Proc. Steklov Inst. Math., 140 (1976), 130–161 | MR | Zbl

[18] G. G. Kazaryan, “On adding low – order terms to differential polynomials”, Izv. Akad. Nauk Armenian SSR, Math., 9:6 (1974), 473–485 (in Russian)

[19] G. G. Kazaryan, “$L_p$-estimates for mixed derivatives in terms of differential polynomials”, Proc. Steklov Inst. Math., 105 (1969), 66–76 | Zbl

[20] G. G. Kazaryan, V. N. Margaryan, “Criteria for hypoellipticity in terms of power and strength of operators”, Proc. Steklov Inst. Math., 150 (1981), 135–150 | MR | Zbl

[21] G. G. Kazaryan, “On the comparison of differential operators and on differential operators of constant strength”, Proc. Steklov Inst. Math., 131 (1974), 94–118 | MR | Zbl

[22] G. G. Kazaryan, “On a family of hypoelliptic polynomials”, Izv. Akad. Nauk Armenian SSR, Math., 9:3 (1974), 189–211 (in Russian) | MR | Zbl

[23] A. G. Khovanskii, “Newton polyhedra (algebra and geometry)”, Amer. Math. Soc. Transl., 153:2 (1992), 1–15

[24] A. N. Kolmogorov, S. V. Fomin, Elements of the theory of functions and functional analysis, Dover Publ., Inc., Mineola, New York, 1999 | MR

[25] P. Kythe, Fundamental solutions for differential operators and applications, Birkhäuser, Boston–Basel–Berlin, 2012 | MR

[26] E. Larsson, “Generalized hyperbolicity”, Ark. Mat., 7 (1967), 11–32 | DOI | MR | Zbl

[27] V. N. Margaryan, “On the presentation of $\lambda$-homogeneous polynomials of two variables”, Collection of works of the 10th annual scientific conference of the Russian-Armenian University, 2015, 19–23

[28] V. N. Margaryan, “Adding lower order terms that preserve the hypoellipticity of the operator”, Izv. NAS Armenii, Math., 15:6 (1980), 443–460 (in Russian) | MR | Zbl

[29] V. N. Margaryan, H. G. Ghazaryan, “On a class of weakly hyperbolic operators”, Journal of Contemporary Math. Analysis, 53:6 (2018), 53–69 (in Russian) | DOI | MR | Zbl

[30] V. N. Margaryan, H. G. Ghazaryan, “On the Cauchy problem in the multianisotropic Gevrey classes for hyperbolic equations”, Journal of Contemporary Math. Analysis, 50:3 (2015), 36–46 | DOI | MR

[31] V. N. Margaryan, H. G. Ghazaryan, “On fundamental solutions of a class of weak hyperbolic operators”, Eurasian Math. J., 9:2 (2018), 54–67 | DOI | MR | Zbl

[32] V. N. Margaryan, G. H. Hakobyan, “On Gevrey type solutions of hypoelliptic equations”, Journal of Contemporary Math. Analysis, 31:2 (1996), 33–47 | MR | Zbl

[33] V. P. Mikchailov, “The behaviour of a class of polynomials at infinity”, Proc. Steklov Inst. Math., 91 (1967), 59–81 (in Russian) | MR

[34] S. Mizohata, “On the Cachy problem”, Notes and Reports on Mathematics in Science and Enginerings, v. 3, Acad press Inc., Orlando, FL; Science Press, Beijing, 1985 | MR | Zbl

[35] I. G. Petrovsky, “Über das Cauchysche Problem für Systeme von partiellen Differentialgleichungen”, Mat. Sb., 2 (1937), 815–870

[36] B. Pini, “Osservazioni sulla ipoellittisita”, Boll. Unione Mat. Ital., ser. III, 18:4 (1963), 420–433 | MR

[37] B. Pini, “Sulla classe di Gevrey della soluzone di certe equazioni ipoellittiche”, Boll.Unione Mat. Ital., ser. III, 18:3 (1963), 260–269 | MR | Zbl

[38] L. Rodino, Linear partial differential operators in Gevrey spaces, Word Scientific, Singapore, 1993 | MR | Zbl