Limit points for normalized Laplacian eigenvalues
The electronic journal of linear algebra, Tome 15 (2006), pp. 337-344.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Limit points for the positive eigenvalues of the normalized Laplacian matrix of a graph are considered. Specifically, it is shown that the set of limit points for the j-th smallest such eigenvalues is equal to [0, 1], while the set of limit points for the j-th largest such eigenvalues is equal to [1, 2]. Limit points for certain functions of the eigenvalues, motivated by considerations for random walks, distances between vertex sets, and isoperimetric numbers, are also considered.
Classification : 05C50, 15A18
Mots-clés : normalized Laplacian matrix, limit point, eigenvalue
@article{ELA_2006__15__a0,
     author = {Kirkland, Steve},
     title = {Limit points for normalized {Laplacian} eigenvalues},
     journal = {The electronic journal of linear algebra},
     pages = {337--344},
     publisher = {mathdoc},
     volume = {15},
     year = {2006},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ELA_2006__15__a0/}
}
TY  - JOUR
AU  - Kirkland, Steve
TI  - Limit points for normalized Laplacian eigenvalues
JO  - The electronic journal of linear algebra
PY  - 2006
SP  - 337
EP  - 344
VL  - 15
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ELA_2006__15__a0/
LA  - en
ID  - ELA_2006__15__a0
ER  - 
%0 Journal Article
%A Kirkland, Steve
%T Limit points for normalized Laplacian eigenvalues
%J The electronic journal of linear algebra
%D 2006
%P 337-344
%V 15
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ELA_2006__15__a0/
%G en
%F ELA_2006__15__a0
Kirkland, Steve. Limit points for normalized Laplacian eigenvalues. The electronic journal of linear algebra, Tome 15 (2006), pp. 337-344. https://geodesic-test.mathdoc.fr/item/ELA_2006__15__a0/