Bounded and large radially symmetric solutions for some (p,q)-Laplacian stationary systems
Electronic Journal of Differential Equations, Tome 2012 (2012).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: This article concerns radially symmetric positive solutions of second-order quasilinear elliptic systems. In terms of the growth of the variable potential functions, we establish conditions such that the solutions are either bounded or blow up at infinity.
Classification : 34C11, 35B07, 35B09, 35J47, 35J92
Mots-clés : radial positive solutions, bounded solutions, large solutions, quasilinear elliptic systems
@article{EJDE_2012__2012__a76,
     author = {Ben Dkhil, Adel and Zeddini, Noureddine},
     title = {Bounded and large radially symmetric solutions for some $(p,q)${-Laplacian} stationary systems},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2012},
     year = {2012},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/EJDE_2012__2012__a76/}
}
TY  - JOUR
AU  - Ben Dkhil, Adel
AU  - Zeddini, Noureddine
TI  - Bounded and large radially symmetric solutions for some $(p,q)$-Laplacian stationary systems
JO  - Electronic Journal of Differential Equations
PY  - 2012
VL  - 2012
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/EJDE_2012__2012__a76/
LA  - en
ID  - EJDE_2012__2012__a76
ER  - 
%0 Journal Article
%A Ben Dkhil, Adel
%A Zeddini, Noureddine
%T Bounded and large radially symmetric solutions for some $(p,q)$-Laplacian stationary systems
%J Electronic Journal of Differential Equations
%D 2012
%V 2012
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/EJDE_2012__2012__a76/
%G en
%F EJDE_2012__2012__a76
Ben Dkhil, Adel; Zeddini, Noureddine. Bounded and large radially symmetric solutions for some $(p,q)$-Laplacian stationary systems. Electronic Journal of Differential Equations, Tome 2012 (2012). https://geodesic-test.mathdoc.fr/item/EJDE_2012__2012__a76/