For which graphs does every edge belong to exactly two chordless cycles?
The Electronic Journal of Combinatorics [electronic only], Tome 3 (1996) no. 1.
Voir la notice de l'article dans European Digital Mathematics Library
@article{EJC_1996__3_1_118909, author = {Peled, Uri N. and Wu, Julin}, title = {For which graphs does every edge belong to exactly two chordless cycles?}, journal = {The Electronic Journal of Combinatorics [electronic only]}, publisher = {mathdoc}, volume = {3}, number = {1}, year = {1996}, zbl = {0851.05072}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/EJC_1996__3_1_118909/} }
TY - JOUR AU - Peled, Uri N. AU - Wu, Julin TI - For which graphs does every edge belong to exactly two chordless cycles? JO - The Electronic Journal of Combinatorics [electronic only] PY - 1996 VL - 3 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/EJC_1996__3_1_118909/ LA - en ID - EJC_1996__3_1_118909 ER -
%0 Journal Article %A Peled, Uri N. %A Wu, Julin %T For which graphs does every edge belong to exactly two chordless cycles? %J The Electronic Journal of Combinatorics [electronic only] %D 1996 %V 3 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/EJC_1996__3_1_118909/ %G en %F EJC_1996__3_1_118909
Peled, Uri N.; Wu, Julin. For which graphs does every edge belong to exactly two chordless cycles?. The Electronic Journal of Combinatorics [electronic only], Tome 3 (1996) no. 1. https://geodesic-test.mathdoc.fr/item/EJC_1996__3_1_118909/