For which graphs does every edge belong to exactly two chordless cycles?
The Electronic Journal of Combinatorics [electronic only], Tome 3 (1996) no. 1.

Voir la notice de l'article dans European Digital Mathematics Library

Classification : 05C38, 05C50
Mots-clés : chordless cycles, 2-cycled graphs, matrices, balance
@article{EJC_1996__3_1_118909,
     author = {Peled, Uri N. and Wu, Julin},
     title = {For which graphs does every edge belong to exactly two chordless cycles?},
     journal = {The Electronic Journal of Combinatorics [electronic only]},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {1996},
     zbl = {0851.05072},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/EJC_1996__3_1_118909/}
}
TY  - JOUR
AU  - Peled, Uri N.
AU  - Wu, Julin
TI  - For which graphs does every edge belong to exactly two chordless cycles?
JO  - The Electronic Journal of Combinatorics [electronic only]
PY  - 1996
VL  - 3
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/EJC_1996__3_1_118909/
LA  - en
ID  - EJC_1996__3_1_118909
ER  - 
%0 Journal Article
%A Peled, Uri N.
%A Wu, Julin
%T For which graphs does every edge belong to exactly two chordless cycles?
%J The Electronic Journal of Combinatorics [electronic only]
%D 1996
%V 3
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/EJC_1996__3_1_118909/
%G en
%F EJC_1996__3_1_118909
Peled, Uri N.; Wu, Julin. For which graphs does every edge belong to exactly two chordless cycles?. The Electronic Journal of Combinatorics [electronic only], Tome 3 (1996) no. 1. https://geodesic-test.mathdoc.fr/item/EJC_1996__3_1_118909/