On the minimum vector rank of multigraphs
ELA. The Electronic Journal of Linear Algebra, Tome 20 (2010), pp. 661-672.
Voir la notice de l'article dans Electronic Library of Mathematics
Summary: The minimum vector rank (mvr) of a graph over a field F is the smallest d for which a faithful vector representation of G exists in F d . For simple graphs, minimum semidefinite rank (msr) and minimum vector rank differ by exactly the number of isolated vertices. We explore the relationship between msr and mvr for multigraphs and show that a result linking the msr of chordal graphs to clique cover number also holds for the mvr of multigraphs. We study the difference between msr and mvr in the removal of duplicate vertices in multigraphs, and relate mvr to certain coloring problems.
Classification :
15A18, 05C50, 15A57
Mots-clés : minimum semidefinite rank, minimum vector rank, duplicate vertices, chordal graph
Mots-clés : minimum semidefinite rank, minimum vector rank, duplicate vertices, chordal graph
@article{EEJLA_2010__20__a7, author = {Mitchell, Lon H. and Narayan, Sivaram K. and Rogers, Ian}, title = {On the minimum vector rank of multigraphs}, journal = {ELA. The Electronic Journal of Linear Algebra}, pages = {661--672}, publisher = {mathdoc}, volume = {20}, year = {2010}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/EEJLA_2010__20__a7/} }
TY - JOUR AU - Mitchell, Lon H. AU - Narayan, Sivaram K. AU - Rogers, Ian TI - On the minimum vector rank of multigraphs JO - ELA. The Electronic Journal of Linear Algebra PY - 2010 SP - 661 EP - 672 VL - 20 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/EEJLA_2010__20__a7/ LA - en ID - EEJLA_2010__20__a7 ER -
Mitchell, Lon H.; Narayan, Sivaram K.; Rogers, Ian. On the minimum vector rank of multigraphs. ELA. The Electronic Journal of Linear Algebra, Tome 20 (2010), pp. 661-672. https://geodesic-test.mathdoc.fr/item/EEJLA_2010__20__a7/