Ranges of Sylvester maps and a minimal rank problem
ELA. The Electronic Journal of Linear Algebra, Tome 20 (2010), pp. 126-135.
Voir la notice de l'article dans Electronic Library of Mathematics
Summary: It is proved that the range of a Sylvester map defined by two matrices of sizes p $\times p$ and q $\times q, respectively,$ plus matrices whose ranks are bounded above, cover all p $\times q$ matrices. The best possible upper bound on the ranks is found in many cases. An application is made to a minimal rank problem that is motivated by the theory of minimal factorizations of rational matrix functions.
Classification :
15A06, 15A99
Mots-clés : Sylvester maps, invariant subspaces, rank
Mots-clés : Sylvester maps, invariant subspaces, rank
@article{EEJLA_2010__20__a44, author = {Ran, Andre C.M. and Rodman, Leiba X.}, title = {Ranges of {Sylvester} maps and a minimal rank problem}, journal = {ELA. The Electronic Journal of Linear Algebra}, pages = {126--135}, publisher = {mathdoc}, volume = {20}, year = {2010}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/EEJLA_2010__20__a44/} }
TY - JOUR AU - Ran, Andre C.M. AU - Rodman, Leiba X. TI - Ranges of Sylvester maps and a minimal rank problem JO - ELA. The Electronic Journal of Linear Algebra PY - 2010 SP - 126 EP - 135 VL - 20 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/EEJLA_2010__20__a44/ LA - en ID - EEJLA_2010__20__a44 ER -
Ran, Andre C.M.; Rodman, Leiba X. Ranges of Sylvester maps and a minimal rank problem. ELA. The Electronic Journal of Linear Algebra, Tome 20 (2010), pp. 126-135. https://geodesic-test.mathdoc.fr/item/EEJLA_2010__20__a44/