Ranges of Sylvester maps and a minimal rank problem
ELA. The Electronic Journal of Linear Algebra, Tome 20 (2010), pp. 126-135.

Voir la notice de l'article dans Electronic Library of Mathematics

Summary: It is proved that the range of a Sylvester map defined by two matrices of sizes p $\times p$ and q $\times q, respectively,$ plus matrices whose ranks are bounded above, cover all p $\times q$ matrices. The best possible upper bound on the ranks is found in many cases. An application is made to a minimal rank problem that is motivated by the theory of minimal factorizations of rational matrix functions.
Classification : 15A06, 15A99
Mots-clés : Sylvester maps, invariant subspaces, rank
@article{EEJLA_2010__20__a44,
     author = {Ran, Andre C.M. and Rodman, Leiba X.},
     title = {Ranges of {Sylvester} maps and a minimal rank problem},
     journal = {ELA. The Electronic Journal of Linear Algebra},
     pages = {126--135},
     publisher = {mathdoc},
     volume = {20},
     year = {2010},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/EEJLA_2010__20__a44/}
}
TY  - JOUR
AU  - Ran, Andre C.M.
AU  - Rodman, Leiba X.
TI  - Ranges of Sylvester maps and a minimal rank problem
JO  - ELA. The Electronic Journal of Linear Algebra
PY  - 2010
SP  - 126
EP  - 135
VL  - 20
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/EEJLA_2010__20__a44/
LA  - en
ID  - EEJLA_2010__20__a44
ER  - 
%0 Journal Article
%A Ran, Andre C.M.
%A Rodman, Leiba X.
%T Ranges of Sylvester maps and a minimal rank problem
%J ELA. The Electronic Journal of Linear Algebra
%D 2010
%P 126-135
%V 20
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/EEJLA_2010__20__a44/
%G en
%F EEJLA_2010__20__a44
Ran, Andre C.M.; Rodman, Leiba X. Ranges of Sylvester maps and a minimal rank problem. ELA. The Electronic Journal of Linear Algebra, Tome 20 (2010), pp. 126-135. https://geodesic-test.mathdoc.fr/item/EEJLA_2010__20__a44/