Extremal algebraic connectivities of certain caterpillar classes and symmetric caterpillars
ELA. The Electronic Journal of Linear Algebra, Tome 20 (2010), pp. 136-157.
Voir la notice de l'article dans Electronic Library of Mathematics
Summary: A caterpillar is a tree in which the removal of all pendant vertices makes it a path. Let d $\geq 3$ and n $\geq 6$ be given. Let P d - 1 be the path of d - 1 vertices and S p be the star of p + 1 vertices. Let p = [p
Classification :
05C50, 15A48, 05C05
Mots-clés : Laplacian matrix, algebraic connectivity, caterpillar, bottleneck matrices, Perron branches, characteristic vertices
Mots-clés : Laplacian matrix, algebraic connectivity, caterpillar, bottleneck matrices, Perron branches, characteristic vertices
@article{EEJLA_2010__20__a43, author = {Rojo, Oscar and Medina, Luis and De Abreu, Nair M.M. and Justel, Claudia}, title = {Extremal algebraic connectivities of certain caterpillar classes and symmetric caterpillars}, journal = {ELA. The Electronic Journal of Linear Algebra}, pages = {136--157}, publisher = {mathdoc}, volume = {20}, year = {2010}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/EEJLA_2010__20__a43/} }
TY - JOUR AU - Rojo, Oscar AU - Medina, Luis AU - De Abreu, Nair M.M. AU - Justel, Claudia TI - Extremal algebraic connectivities of certain caterpillar classes and symmetric caterpillars JO - ELA. The Electronic Journal of Linear Algebra PY - 2010 SP - 136 EP - 157 VL - 20 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/EEJLA_2010__20__a43/ LA - en ID - EEJLA_2010__20__a43 ER -
%0 Journal Article %A Rojo, Oscar %A Medina, Luis %A De Abreu, Nair M.M. %A Justel, Claudia %T Extremal algebraic connectivities of certain caterpillar classes and symmetric caterpillars %J ELA. The Electronic Journal of Linear Algebra %D 2010 %P 136-157 %V 20 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/EEJLA_2010__20__a43/ %G en %F EEJLA_2010__20__a43
Rojo, Oscar; Medina, Luis; De Abreu, Nair M.M.; Justel, Claudia. Extremal algebraic connectivities of certain caterpillar classes and symmetric caterpillars. ELA. The Electronic Journal of Linear Algebra, Tome 20 (2010), pp. 136-157. https://geodesic-test.mathdoc.fr/item/EEJLA_2010__20__a43/