On symmetric matrices with exactly one positive eigenvalue
ELA. The Electronic Journal of Linear Algebra, Tome 20 (2010), pp. 158-167.
Voir la notice de l'article dans Electronic Library of Mathematics
Summary: We present a class of nonsingular matrices, the M C $^{\prime}$ -matrices, and prove that the class of symmetric M C-matrices introduced by Shen, Huang and Jing [On inclusion and exclusion intervals for the real eigenvalues of real matrices. SIAM J. Matrix Anal. Appl., 31:816-830, 2009] and the class of symmetric M C $^{\prime}$ -matrices are both subsets of the class of symmetric matrices with exactly one positive eigenvalue. Some other sufficient conditions for a symmetric matrix to have exactly one positive eigenvalue are derived.
Classification :
15A18, 15A48, 15A57
Mots-clés : eigenvalue, symmetric matrix, M C-matrix, M C $^{\prime}$ -matrix
Mots-clés : eigenvalue, symmetric matrix, M C-matrix, M C $^{\prime}$ -matrix
@article{EEJLA_2010__20__a42, author = {Shen, Shu-Qian and Huang, Ting-Zhu}, title = {On symmetric matrices with exactly one positive eigenvalue}, journal = {ELA. The Electronic Journal of Linear Algebra}, pages = {158--167}, publisher = {mathdoc}, volume = {20}, year = {2010}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/EEJLA_2010__20__a42/} }
TY - JOUR AU - Shen, Shu-Qian AU - Huang, Ting-Zhu TI - On symmetric matrices with exactly one positive eigenvalue JO - ELA. The Electronic Journal of Linear Algebra PY - 2010 SP - 158 EP - 167 VL - 20 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/EEJLA_2010__20__a42/ LA - en ID - EEJLA_2010__20__a42 ER -
Shen, Shu-Qian; Huang, Ting-Zhu. On symmetric matrices with exactly one positive eigenvalue. ELA. The Electronic Journal of Linear Algebra, Tome 20 (2010), pp. 158-167. https://geodesic-test.mathdoc.fr/item/EEJLA_2010__20__a42/