On symmetric matrices with exactly one positive eigenvalue
ELA. The Electronic Journal of Linear Algebra, Tome 20 (2010), pp. 158-167.

Voir la notice de l'article dans Electronic Library of Mathematics

Summary: We present a class of nonsingular matrices, the M C $^{\prime}$ -matrices, and prove that the class of symmetric M C-matrices introduced by Shen, Huang and Jing [On inclusion and exclusion intervals for the real eigenvalues of real matrices. SIAM J. Matrix Anal. Appl., 31:816-830, 2009] and the class of symmetric M C $^{\prime}$ -matrices are both subsets of the class of symmetric matrices with exactly one positive eigenvalue. Some other sufficient conditions for a symmetric matrix to have exactly one positive eigenvalue are derived.
Classification : 15A18, 15A48, 15A57
Mots-clés : eigenvalue, symmetric matrix, M C-matrix, M C $^{\prime}$ -matrix
@article{EEJLA_2010__20__a42,
     author = {Shen, Shu-Qian and Huang, Ting-Zhu},
     title = {On symmetric matrices with exactly one positive eigenvalue},
     journal = {ELA. The Electronic Journal of Linear Algebra},
     pages = {158--167},
     publisher = {mathdoc},
     volume = {20},
     year = {2010},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/EEJLA_2010__20__a42/}
}
TY  - JOUR
AU  - Shen, Shu-Qian
AU  - Huang, Ting-Zhu
TI  - On symmetric matrices with exactly one positive eigenvalue
JO  - ELA. The Electronic Journal of Linear Algebra
PY  - 2010
SP  - 158
EP  - 167
VL  - 20
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/EEJLA_2010__20__a42/
LA  - en
ID  - EEJLA_2010__20__a42
ER  - 
%0 Journal Article
%A Shen, Shu-Qian
%A Huang, Ting-Zhu
%T On symmetric matrices with exactly one positive eigenvalue
%J ELA. The Electronic Journal of Linear Algebra
%D 2010
%P 158-167
%V 20
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/EEJLA_2010__20__a42/
%G en
%F EEJLA_2010__20__a42
Shen, Shu-Qian; Huang, Ting-Zhu. On symmetric matrices with exactly one positive eigenvalue. ELA. The Electronic Journal of Linear Algebra, Tome 20 (2010), pp. 158-167. https://geodesic-test.mathdoc.fr/item/EEJLA_2010__20__a42/