A characterization of strong regularity of interval matrices
ELA. The Electronic Journal of Linear Algebra, Tome 20 (2010), pp. 717-722.

Voir la notice de l'article dans Electronic Library of Mathematics

Summary: As the main result of this paper it is proved that an interval matrix [A c - $\Delta $, A $c + \Delta $] is strongly regular if and only if the matrix inequality M (I - |I - RA c | - |R|$\Delta ) \geq I$ has a solution, where M and R are real square matrices and M is nonnegative. Several consequences of this result are drawn.
Classification : 65G40
Mots-clés : interval matrix, strong regularity, spectral radius, matrix inequality, solvability
@article{EEJLA_2010__20__a4,
     author = {Rohn, Jiri},
     title = {A characterization of strong regularity of interval matrices},
     journal = {ELA. The Electronic Journal of Linear Algebra},
     pages = {717--722},
     publisher = {mathdoc},
     volume = {20},
     year = {2010},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/EEJLA_2010__20__a4/}
}
TY  - JOUR
AU  - Rohn, Jiri
TI  - A characterization of strong regularity of interval matrices
JO  - ELA. The Electronic Journal of Linear Algebra
PY  - 2010
SP  - 717
EP  - 722
VL  - 20
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/EEJLA_2010__20__a4/
LA  - en
ID  - EEJLA_2010__20__a4
ER  - 
%0 Journal Article
%A Rohn, Jiri
%T A characterization of strong regularity of interval matrices
%J ELA. The Electronic Journal of Linear Algebra
%D 2010
%P 717-722
%V 20
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/EEJLA_2010__20__a4/
%G en
%F EEJLA_2010__20__a4
Rohn, Jiri. A characterization of strong regularity of interval matrices. ELA. The Electronic Journal of Linear Algebra, Tome 20 (2010), pp. 717-722. https://geodesic-test.mathdoc.fr/item/EEJLA_2010__20__a4/