Weighted matrix eigenvalue bounds on the independence number of a graph
ELA. The Electronic Journal of Linear Algebra, Tome 20 (2010), pp. 468-489.
Voir la notice de l'article dans Electronic Library of Mathematics
Summary: Weighted generalizations of Hoffman's ratio bound on the independence number of a regular graph are surveyed. Several known bounds are reviewed as special cases of modest extensions.Comparisons are made with the Shannon capacity $\Theta $, Lovász' parameter $\vartheta $, Schrijver's parameter $\vartheta ^{\prime}$ , and the ultimate independence ratio for categorical products. The survey concludes with some observations on graphs that attain a weighted version of a bound of Cvetković.
Classification :
05C50, 05E99, 15A18
Mots-clés : independence number, eigenvalues, ratio bound, graph, matrix
Mots-clés : independence number, eigenvalues, ratio bound, graph, matrix
@article{EEJLA_2010__20__a19, author = {Elzinga, Randall J. and Gregory, David A.}, title = {Weighted matrix eigenvalue bounds on the independence number of a graph}, journal = {ELA. The Electronic Journal of Linear Algebra}, pages = {468--489}, publisher = {mathdoc}, volume = {20}, year = {2010}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/EEJLA_2010__20__a19/} }
TY - JOUR AU - Elzinga, Randall J. AU - Gregory, David A. TI - Weighted matrix eigenvalue bounds on the independence number of a graph JO - ELA. The Electronic Journal of Linear Algebra PY - 2010 SP - 468 EP - 489 VL - 20 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/EEJLA_2010__20__a19/ LA - en ID - EEJLA_2010__20__a19 ER -
%0 Journal Article %A Elzinga, Randall J. %A Gregory, David A. %T Weighted matrix eigenvalue bounds on the independence number of a graph %J ELA. The Electronic Journal of Linear Algebra %D 2010 %P 468-489 %V 20 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/EEJLA_2010__20__a19/ %G en %F EEJLA_2010__20__a19
Elzinga, Randall J.; Gregory, David A. Weighted matrix eigenvalue bounds on the independence number of a graph. ELA. The Electronic Journal of Linear Algebra, Tome 20 (2010), pp. 468-489. https://geodesic-test.mathdoc.fr/item/EEJLA_2010__20__a19/