Weighted matrix eigenvalue bounds on the independence number of a graph
ELA. The Electronic Journal of Linear Algebra, Tome 20 (2010), pp. 468-489.

Voir la notice de l'article dans Electronic Library of Mathematics

Summary: Weighted generalizations of Hoffman's ratio bound on the independence number of a regular graph are surveyed. Several known bounds are reviewed as special cases of modest extensions.Comparisons are made with the Shannon capacity $\Theta $, Lovász' parameter $\vartheta $, Schrijver's parameter $\vartheta ^{\prime}$ , and the ultimate independence ratio for categorical products. The survey concludes with some observations on graphs that attain a weighted version of a bound of Cvetković.
Classification : 05C50, 05E99, 15A18
Mots-clés : independence number, eigenvalues, ratio bound, graph, matrix
@article{EEJLA_2010__20__a19,
     author = {Elzinga, Randall J. and Gregory, David A.},
     title = {Weighted matrix eigenvalue bounds on the independence number of a graph},
     journal = {ELA. The Electronic Journal of Linear Algebra},
     pages = {468--489},
     publisher = {mathdoc},
     volume = {20},
     year = {2010},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/EEJLA_2010__20__a19/}
}
TY  - JOUR
AU  - Elzinga, Randall J.
AU  - Gregory, David A.
TI  - Weighted matrix eigenvalue bounds on the independence number of a graph
JO  - ELA. The Electronic Journal of Linear Algebra
PY  - 2010
SP  - 468
EP  - 489
VL  - 20
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/EEJLA_2010__20__a19/
LA  - en
ID  - EEJLA_2010__20__a19
ER  - 
%0 Journal Article
%A Elzinga, Randall J.
%A Gregory, David A.
%T Weighted matrix eigenvalue bounds on the independence number of a graph
%J ELA. The Electronic Journal of Linear Algebra
%D 2010
%P 468-489
%V 20
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/EEJLA_2010__20__a19/
%G en
%F EEJLA_2010__20__a19
Elzinga, Randall J.; Gregory, David A. Weighted matrix eigenvalue bounds on the independence number of a graph. ELA. The Electronic Journal of Linear Algebra, Tome 20 (2010), pp. 468-489. https://geodesic-test.mathdoc.fr/item/EEJLA_2010__20__a19/