Leonard pairs from the equitable basis of $sl_{2}$
ELA. The Electronic Journal of Linear Algebra, Tome 20 (2010), pp. 490-505.
Voir la notice de l'article dans Electronic Library of Mathematics
Summary: We construct Leonard pairs from finite-dimensional irreducible sl 2 -modules, using the equitable basis for sl 2 . We show that our construction yields all Leonard pairs of Racah, Hahn, dual Hahn, and Krawtchouk type, and no other types of Leonard pairs.
Classification :
17B10, 05E35, 33C45
Mots-clés : Lie algebra, racah polynomials, hahn polynomials, dual hahn polynomials, krawtchouk polynomials
Mots-clés : Lie algebra, racah polynomials, hahn polynomials, dual hahn polynomials, krawtchouk polynomials
@article{EEJLA_2010__20__a18, author = {Alnajjar, Hasan and Curtin, Brian}, title = {Leonard pairs from the equitable basis of $sl_{2}$}, journal = {ELA. The Electronic Journal of Linear Algebra}, pages = {490--505}, publisher = {mathdoc}, volume = {20}, year = {2010}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/EEJLA_2010__20__a18/} }
TY - JOUR AU - Alnajjar, Hasan AU - Curtin, Brian TI - Leonard pairs from the equitable basis of $sl_{2}$ JO - ELA. The Electronic Journal of Linear Algebra PY - 2010 SP - 490 EP - 505 VL - 20 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/EEJLA_2010__20__a18/ LA - en ID - EEJLA_2010__20__a18 ER -
Alnajjar, Hasan; Curtin, Brian. Leonard pairs from the equitable basis of $sl_{2}$. ELA. The Electronic Journal of Linear Algebra, Tome 20 (2010), pp. 490-505. https://geodesic-test.mathdoc.fr/item/EEJLA_2010__20__a18/