On the strong Arnol'd hypothesis and the connectivity of graphs
ELA. The Electronic Journal of Linear Algebra, Tome 20 (2010), pp. 574-585.

Voir la notice de l'article dans Electronic Library of Mathematics

Summary: In the definition of the graph parameters $\mu (G)$ and $\nu (G)$, introduced by Colin de Verdi` ere, and in the definition of the graph parameter $\xi (G)$, introduced by Barioli, Fallat, and Hogben, a transversality condition is used, called the Strong Arnol'd Hypothesis. In this paper, we define the Strong Arnol'd Hypothesis for linear subspaces L $\subseteq R$ n with respect to a graph G = (V, E), with $V = {1, 2, . . . , n}$. We give a necessary and sufficient condition for a linear subspace L $\subseteq R$ n with dim L $\leq 2$ to satisfy the Strong Arnol'd Hypothesis with respect to a graph G, and we obtain a sufficient condition for a linear subspace L $\subseteq R$ n with dim L = 3 to satisfy the Strong Arnol'd Hypothesis with respect to a graph G. We apply these results to show that if G = (V, E) with $V= {1, 2, . . . , n}$ is a path, 2-connected outerplanar, or 3-connected planar, then each real symmetric n $\times n$ matrix M = [m i,j ] with m i,j 0 if ij $\in E$ and m i,j = 0 if i = j and ij $\in E$ (and no restriction on the diagonal), having exactly one negative eigenvalue, satisfies the Strong Arnol'd Hypothesis.
Classification : 05C50, 15A18
Mots-clés : symmetric matrices, nullity, graphs, transversality, planar, outerplanar, graph minor
@article{EEJLA_2010__20__a13,
     author = {Van Der Holst, Hein},
     title = {On the strong {Arnol'd} hypothesis and the connectivity of graphs},
     journal = {ELA. The Electronic Journal of Linear Algebra},
     pages = {574--585},
     publisher = {mathdoc},
     volume = {20},
     year = {2010},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/EEJLA_2010__20__a13/}
}
TY  - JOUR
AU  - Van Der Holst, Hein
TI  - On the strong Arnol'd hypothesis and the connectivity of graphs
JO  - ELA. The Electronic Journal of Linear Algebra
PY  - 2010
SP  - 574
EP  - 585
VL  - 20
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/EEJLA_2010__20__a13/
LA  - en
ID  - EEJLA_2010__20__a13
ER  - 
%0 Journal Article
%A Van Der Holst, Hein
%T On the strong Arnol'd hypothesis and the connectivity of graphs
%J ELA. The Electronic Journal of Linear Algebra
%D 2010
%P 574-585
%V 20
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/EEJLA_2010__20__a13/
%G en
%F EEJLA_2010__20__a13
Van Der Holst, Hein. On the strong Arnol'd hypothesis and the connectivity of graphs. ELA. The Electronic Journal of Linear Algebra, Tome 20 (2010), pp. 574-585. https://geodesic-test.mathdoc.fr/item/EEJLA_2010__20__a13/