A microscopic model for the Burgers equation and longest increasing subsequences.
Electronic Communications in Probability [electronic only], Tome 1 (1996) no. 5, p. 1.
Voir la notice de l'article dans European Digital Mathematics Library
Classification :
35L65, 82C22, 60C05, 60K35
Mots-clés : Ulam's problem, empirical stick profile, Burgers equation, Lax formula, Radon measure
Mots-clés : Ulam's problem, empirical stick profile, Burgers equation, Lax formula, Radon measure
@article{ECP_1996__1_5_119503, author = {Sepp\"al\"ainen, Timo}, title = {A microscopic model for the {Burgers} equation and longest increasing subsequences.}, journal = {Electronic Communications in Probability [electronic only]}, pages = {1}, publisher = {mathdoc}, volume = {1}, number = {5}, year = {1996}, zbl = {0891.60093}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/ECP_1996__1_5_119503/} }
TY - JOUR AU - Seppäläinen, Timo TI - A microscopic model for the Burgers equation and longest increasing subsequences. JO - Electronic Communications in Probability [electronic only] PY - 1996 SP - 1 VL - 1 IS - 5 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/ECP_1996__1_5_119503/ LA - en ID - ECP_1996__1_5_119503 ER -
%0 Journal Article %A Seppäläinen, Timo %T A microscopic model for the Burgers equation and longest increasing subsequences. %J Electronic Communications in Probability [electronic only] %D 1996 %P 1 %V 1 %N 5 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/ECP_1996__1_5_119503/ %G en %F ECP_1996__1_5_119503
Seppäläinen, Timo. A microscopic model for the Burgers equation and longest increasing subsequences.. Electronic Communications in Probability [electronic only], Tome 1 (1996) no. 5, p. 1. https://geodesic-test.mathdoc.fr/item/ECP_1996__1_5_119503/