A microscopic model for the Burgers equation and longest increasing subsequences.
Electronic Communications in Probability [electronic only], Tome 1 (1996) no. 5, p. 1.

Voir la notice de l'article dans European Digital Mathematics Library

Classification : 35L65, 82C22, 60C05, 60K35
Mots-clés : Ulam's problem, empirical stick profile, Burgers equation, Lax formula, Radon measure
@article{ECP_1996__1_5_119503,
     author = {Sepp\"al\"ainen, Timo},
     title = {A microscopic model for the {Burgers} equation and longest increasing subsequences.},
     journal = {Electronic Communications in Probability [electronic only]},
     pages = {1},
     publisher = {mathdoc},
     volume = {1},
     number = {5},
     year = {1996},
     zbl = {0891.60093},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ECP_1996__1_5_119503/}
}
TY  - JOUR
AU  - Seppäläinen, Timo
TI  - A microscopic model for the Burgers equation and longest increasing subsequences.
JO  - Electronic Communications in Probability [electronic only]
PY  - 1996
SP  - 1
VL  - 1
IS  - 5
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ECP_1996__1_5_119503/
LA  - en
ID  - ECP_1996__1_5_119503
ER  - 
%0 Journal Article
%A Seppäläinen, Timo
%T A microscopic model for the Burgers equation and longest increasing subsequences.
%J Electronic Communications in Probability [electronic only]
%D 1996
%P 1
%V 1
%N 5
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ECP_1996__1_5_119503/
%G en
%F ECP_1996__1_5_119503
Seppäläinen, Timo. A microscopic model for the Burgers equation and longest increasing subsequences.. Electronic Communications in Probability [electronic only], Tome 1 (1996) no. 5, p. 1. https://geodesic-test.mathdoc.fr/item/ECP_1996__1_5_119503/