Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2012_12_1_a7, author = {S. Theriault}, title = {A homotopy-theoretic rigidity property of {Bott} manifolds}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {89--97}, publisher = {mathdoc}, volume = {12}, number = {1}, year = {2012}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/DVMG_2012_12_1_a7/} }
S. Theriault. A homotopy-theoretic rigidity property of Bott manifolds. Dalʹnevostočnyj matematičeskij žurnal, Tome 12 (2012) no. 1, pp. 89-97. https://geodesic-test.mathdoc.fr/item/DVMG_2012_12_1_a7/
[1] Baues, The homotopy category of simply-connected $4$-manifolds, London Math. Soc. Lecture Notes Series, 297, Cambridge Univ. Press, Cambridge, 2003 | MR | Zbl
[2] S. Choi, Classification of Bott manifolds up to dimension eight, arXiv: 1112.2321
[3] S. Choi, M. Masuda and D. Y. Suh, “Topological classification of generalized Bott towers”, Trans. Amer. Math. Soc., 362 (2010), 1097–1112 | DOI | MR | Zbl
[4] S. Choi, M. Masuda and D. Y. Suh, Rigidity problems in toric topology, a survey, arXiv: 1102.1359 | MR
[5] M. Masuda, “Equivariant cohomology distinguishes toric manifolds”, Adv. Math., 218 (2008), 2005–2012 | DOI | MR | Zbl
[6] M. Masuda and T. Panov, “Semi-free circle actions, Bott towers, and quasitoric manifolds”, Sb. Math., 199 (2008), 1201–1223 | DOI | MR | Zbl
[7] H. Toda, Composition methods in homotopy groups of spheres, Annals of Math. Studies, 49, Princeton Univ. Press, Princeton NJ, 1962 | MR | Zbl
[8] H. Toda, “On iterated suspensions I ”, J. Math. Kyoto Univ., 5 (1966), 87–142 | MR