A homotopy-theoretic rigidity property of Bott manifolds
Dalʹnevostočnyj matematičeskij žurnal, Tome 12 (2012) no. 1, pp. 89-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

The rigidity conjecture in toric topology posits that two toric manifolds are diffeomorphic if and only if their integral cohomology rings are isomorphic as graded rings. Only a few low dimensional cases have been resolved. We weaken the conjecture to one concerning homotopy type rather than diffeomorphism, and show that the weaker conjecture holds for Bott manifolds, once enough primes have been inverted. In particular, show that the rational homotopy type of a Bott manifold is determined by its rational cohomology ring. The material in this paper was inspired by the mathematics discussed at the International conference «Toric Topology and Automorphic Functions» (September, 5–10th, 2011, Khabarovsk, Russia).
@article{DVMG_2012_12_1_a7,
     author = {S. Theriault},
     title = {A homotopy-theoretic rigidity property of {Bott} manifolds},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {89--97},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2012},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/DVMG_2012_12_1_a7/}
}
TY  - JOUR
AU  - S. Theriault
TI  - A homotopy-theoretic rigidity property of Bott manifolds
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2012
SP  - 89
EP  - 97
VL  - 12
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/DVMG_2012_12_1_a7/
LA  - en
ID  - DVMG_2012_12_1_a7
ER  - 
%0 Journal Article
%A S. Theriault
%T A homotopy-theoretic rigidity property of Bott manifolds
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2012
%P 89-97
%V 12
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/DVMG_2012_12_1_a7/
%G en
%F DVMG_2012_12_1_a7
S. Theriault. A homotopy-theoretic rigidity property of Bott manifolds. Dalʹnevostočnyj matematičeskij žurnal, Tome 12 (2012) no. 1, pp. 89-97. https://geodesic-test.mathdoc.fr/item/DVMG_2012_12_1_a7/

[1] Baues, The homotopy category of simply-connected $4$-manifolds, London Math. Soc. Lecture Notes Series, 297, Cambridge Univ. Press, Cambridge, 2003 | MR | Zbl

[2] S. Choi, Classification of Bott manifolds up to dimension eight, arXiv: 1112.2321

[3] S. Choi, M. Masuda and D. Y. Suh, “Topological classification of generalized Bott towers”, Trans. Amer. Math. Soc., 362 (2010), 1097–1112 | DOI | MR | Zbl

[4] S. Choi, M. Masuda and D. Y. Suh, Rigidity problems in toric topology, a survey, arXiv: 1102.1359 | MR

[5] M. Masuda, “Equivariant cohomology distinguishes toric manifolds”, Adv. Math., 218 (2008), 2005–2012 | DOI | MR | Zbl

[6] M. Masuda and T. Panov, “Semi-free circle actions, Bott towers, and quasitoric manifolds”, Sb. Math., 199 (2008), 1201–1223 | DOI | MR | Zbl

[7] H. Toda, Composition methods in homotopy groups of spheres, Annals of Math. Studies, 49, Princeton Univ. Press, Princeton NJ, 1962 | MR | Zbl

[8] H. Toda, “On iterated suspensions I ”, J. Math. Kyoto Univ., 5 (1966), 87–142 | MR