On transition functions of Topological Toric Manifolds
Dalʹnevostočnyj matematičeskij žurnal, Tome 12 (2012) no. 1, pp. 35-47.

Voir la notice de l'article dans Math-Net.Ru

We show that any topological toric manifold can be covered by finitely many open charts so that all the transition functions between these charts are Laurent monomials of zj's and zj's. In addition, we will describe toric manifolds and some special class of topological toric manifolds in terms of transition functions of charts up to (weakly) equivariant diffeomorphism. The main results of the paper were reported on the section talk at the International conference «Toric Topology and Automorphic Functions» (September, 5–10th, 2011, Khabarovsk, Russia).
@article{DVMG_2012_12_1_a3,
     author = {Yu. Li},
     title = {On transition functions of {Topological} {Toric} {Manifolds}},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {35--47},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2012},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/DVMG_2012_12_1_a3/}
}
TY  - JOUR
AU  - Yu. Li
TI  - On transition functions of Topological Toric Manifolds
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2012
SP  - 35
EP  - 47
VL  - 12
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/DVMG_2012_12_1_a3/
LA  - en
ID  - DVMG_2012_12_1_a3
ER  - 
%0 Journal Article
%A Yu. Li
%T On transition functions of Topological Toric Manifolds
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2012
%P 35-47
%V 12
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/DVMG_2012_12_1_a3/
%G en
%F DVMG_2012_12_1_a3
Yu. Li. On transition functions of Topological Toric Manifolds. Dalʹnevostočnyj matematičeskij žurnal, Tome 12 (2012) no. 1, pp. 35-47. https://geodesic-test.mathdoc.fr/item/DVMG_2012_12_1_a3/

[1] H. Ishida, Y. Fukukawa and M. Masuda, Topological toric manifold, arXiv: 1012.1786 | MR

[2] M. W. Davis and T. Januszkiewicz, “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR | Zbl

[3] V. M. Buchstaber and T. E. Panov, Torus actions and their applications in topology and combinatorics, University Lecture Series, 24, American Mathematical Society, Providence, RI, 2002 | MR | Zbl

[4] Russian Math. Surveys, 33:2 (1978), 97–154 | DOI | MR | Zbl

[5] T. Oda, Convex bodies and algebraic geometry. An introduction to the theory of toric varieties, Springer-Verlag, Berlin, 1988 | MR

[6] C. Ehresmann, “Les connexions infinitésimales dans un espace fibré différentiable”, Colloque de Topologie, Bruxelles, 1950, 29–55 | MR

[7] R. Abraham and J. Robin, Transversal mappings and flows, W. A. Benjamin, Inc., 1967 | MR