$\Bbb Q$-Fano threefolds of large Fano index. I.
Documenta mathematica, Tome 15 (2010), pp. 843-872.

Voir la notice de l'article dans Electronic Library of Mathematics

Summary: We study Q-Fano threefolds of large Fano index. In particular, we prove that the maximum possible Fano index is attained only by the weighted projective space $P(3,4,5,7)$.
Classification : 14J45, 14J30, 14E30
Mots-clés : Q-Fano variety, sarkisov link, linear system
@article{DOCMA_2010__15__a8,
     author = {Prokhorov, Yuri},
     title = {$\Bbb Q${-Fano} threefolds of large {Fano} index. {I.}},
     journal = {Documenta mathematica},
     pages = {843--872},
     publisher = {mathdoc},
     volume = {15},
     year = {2010},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/DOCMA_2010__15__a8/}
}
TY  - JOUR
AU  - Prokhorov, Yuri
TI  - $\Bbb Q$-Fano threefolds of large Fano index. I.
JO  - Documenta mathematica
PY  - 2010
SP  - 843
EP  - 872
VL  - 15
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/DOCMA_2010__15__a8/
LA  - en
ID  - DOCMA_2010__15__a8
ER  - 
%0 Journal Article
%A Prokhorov, Yuri
%T $\Bbb Q$-Fano threefolds of large Fano index. I.
%J Documenta mathematica
%D 2010
%P 843-872
%V 15
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/DOCMA_2010__15__a8/
%G en
%F DOCMA_2010__15__a8
Prokhorov, Yuri. $\Bbb Q$-Fano threefolds of large Fano index. I.. Documenta mathematica, Tome 15 (2010), pp. 843-872. https://geodesic-test.mathdoc.fr/item/DOCMA_2010__15__a8/