On reductions of families of crystalline Galois representations
Documenta mathematica, Tome 15 (2010), pp. 873-938.
Voir la notice de l'article dans Electronic Library of Mathematics
Summary: Let $K_f$ be the finite unramified extension of $\{Q}_p$ of degree $f$ and $E$ any finite large enough coefficient field containing $K_f.$ We construct analytic families of étale $(\varphi ,\Gamma )$-modules which give rise to families of crystalline $E$-representations of the absolute Galois group $G_{K_f}$ of $K_f.$ For any irreducible effective two-dimensional crystalline $E$-representation of $G_{K_f}$ with labeled Hodge-Tate weights ${0,-k_i}_{\tau _i}$ induced from a crystalline character of $G_{K_{2f}},$ we construct an infinite family of crystalline $E$ -representations of $G_{K_f}$ of the same Hodge-Tate type which contains it. As an application, we compute the semisimplified mod $p$ reductions of the members of each such family.
Classification :
11F80, 11F85
Mots-clés : wach modules, $(\varphi $, gamma)$-modules$, reductions of crystalline Galois representations
Mots-clés : wach modules, $(\varphi $, gamma)$-modules$, reductions of crystalline Galois representations
@article{DOCMA_2010__15__a7, author = {Dousmanis, Gerasimos}, title = {On reductions of families of crystalline {Galois} representations}, journal = {Documenta mathematica}, pages = {873--938}, publisher = {mathdoc}, volume = {15}, year = {2010}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/DOCMA_2010__15__a7/} }
Dousmanis, Gerasimos. On reductions of families of crystalline Galois representations. Documenta mathematica, Tome 15 (2010), pp. 873-938. https://geodesic-test.mathdoc.fr/item/DOCMA_2010__15__a7/