Blow-up of solutions to a periodic nonlinear dispersive rod equation
Documenta mathematica, Tome 15 (2010), pp. 267-283.
Voir la notice de l'article dans Electronic Library of Mathematics
Summary: In this paper, firstly we find an optimal constant for a convolution problem on the unit circle via the variational method. Then by using the optimal constant, we give a new and improved sufficient condition on the initial data to guarantee the corresponding strong solution blows up in finite time. We also analyze the corresponding ordinary difference equation associate to the convolution problem and give numerical simulation for the optimal constant.
Classification :
30C70, 37L05, 35Q58, 58E35
Mots-clés : best constant, convolution problem, rod equation, singularity
Mots-clés : best constant, convolution problem, rod equation, singularity
@article{DOCMA_2010__15__a26, author = {Jin, Liangbing and Liu, Yongming and Zhou, Yong}, title = {Blow-up of solutions to a periodic nonlinear dispersive rod equation}, journal = {Documenta mathematica}, pages = {267--283}, publisher = {mathdoc}, volume = {15}, year = {2010}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/DOCMA_2010__15__a26/} }
TY - JOUR AU - Jin, Liangbing AU - Liu, Yongming AU - Zhou, Yong TI - Blow-up of solutions to a periodic nonlinear dispersive rod equation JO - Documenta mathematica PY - 2010 SP - 267 EP - 283 VL - 15 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/DOCMA_2010__15__a26/ LA - en ID - DOCMA_2010__15__a26 ER -
Jin, Liangbing; Liu, Yongming; Zhou, Yong. Blow-up of solutions to a periodic nonlinear dispersive rod equation. Documenta mathematica, Tome 15 (2010), pp. 267-283. https://geodesic-test.mathdoc.fr/item/DOCMA_2010__15__a26/