On the solutions of quadratic Diophantine equations
Documenta mathematica, Tome 15 (2010), pp. 347-385.

Voir la notice de l'article dans Electronic Library of Mathematics

Summary: We determine a finite set of representatives of the set of local solutions in a maximal lattice modulo the stabilizer of the lattice in question for a quadratic Diophantine equation. Our study is based on the works of Shimura on quadratic forms, especially citeSh3 and citeSh4. Indeed, as an application of the result, we present a criterion (in both global and local cases) of the maximality of the lattice of $(11.6\textrm{a} )$ in citeSh3. This gives an answer to the question $(11.6\textrm{a} )$. As one more global application, we investigate primitive solutions contained in a maximal lattice for the sums of squares on each vector space of dimension $4, 6, 8$, or $10$ over the field of rational numbers.
Classification : 11D09, 11E08, 11E12
Mots-clés : maximal lattices, quadratic Diophantine equations
@article{DOCMA_2010__15__a24,
     author = {Yoshinaga, Takashi},
     title = {On the solutions of quadratic {Diophantine} equations},
     journal = {Documenta mathematica},
     pages = {347--385},
     publisher = {mathdoc},
     volume = {15},
     year = {2010},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/DOCMA_2010__15__a24/}
}
TY  - JOUR
AU  - Yoshinaga, Takashi
TI  - On the solutions of quadratic Diophantine equations
JO  - Documenta mathematica
PY  - 2010
SP  - 347
EP  - 385
VL  - 15
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/DOCMA_2010__15__a24/
LA  - en
ID  - DOCMA_2010__15__a24
ER  - 
%0 Journal Article
%A Yoshinaga, Takashi
%T On the solutions of quadratic Diophantine equations
%J Documenta mathematica
%D 2010
%P 347-385
%V 15
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/DOCMA_2010__15__a24/
%G en
%F DOCMA_2010__15__a24
Yoshinaga, Takashi. On the solutions of quadratic Diophantine equations. Documenta mathematica, Tome 15 (2010), pp. 347-385. https://geodesic-test.mathdoc.fr/item/DOCMA_2010__15__a24/