The index of centralizers of elements of reductive Lie algebras
Documenta mathematica, Tome 15 (2010), pp. 387-421.
Voir la notice de l'article dans Electronic Library of Mathematics
Summary: For a finite dimensional complex Lie algebra, its index is the minimal dimension of stabilizers for the coadjoint action. A famous conjecture due to A.G. Elashvili says that the index of the centralizer of an element of a reductive Lie algebra is equal to the rank. That conjecture caught attention of several Lie theorists for years. It reduces to the case of nilpotent elements. In citePa1 and citePa2, D.I. Panyushev proved the conjecture for some classes of nilpotent elements (e.g. regular, subregular and spherical nilpotent elements). Then the conjecture has been proven for the classical Lie algebras in citeY1 and checked with a computer programme for the exceptional ones citeDe. In this paper we give an almost general proof of that conjecture.
Classification :
22E46, 17B80, 17B20, 14L24
Mots-clés : reductive Lie algebra, index, centralizer, argument shift method, Poisson-commutative family of polynomials, rigid nilpotent orbit, slodowy slice
Mots-clés : reductive Lie algebra, index, centralizer, argument shift method, Poisson-commutative family of polynomials, rigid nilpotent orbit, slodowy slice
@article{DOCMA_2010__15__a23, author = {Charbonnel, Jean-Yves and Moreau, Anne}, title = {The index of centralizers of elements of reductive {Lie} algebras}, journal = {Documenta mathematica}, pages = {387--421}, publisher = {mathdoc}, volume = {15}, year = {2010}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/DOCMA_2010__15__a23/} }
TY - JOUR AU - Charbonnel, Jean-Yves AU - Moreau, Anne TI - The index of centralizers of elements of reductive Lie algebras JO - Documenta mathematica PY - 2010 SP - 387 EP - 421 VL - 15 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/DOCMA_2010__15__a23/ LA - en ID - DOCMA_2010__15__a23 ER -
Charbonnel, Jean-Yves; Moreau, Anne. The index of centralizers of elements of reductive Lie algebras. Documenta mathematica, Tome 15 (2010), pp. 387-421. https://geodesic-test.mathdoc.fr/item/DOCMA_2010__15__a23/