The critical values of generalizations of the Hurwitz zeta function
Documenta mathematica, Tome 15 (2010), pp. 489-506.

Voir la notice de l'article dans Electronic Library of Mathematics

Summary: We investigate a few types of generalizations of the Hurwitz zeta function, written $Z(s,a)$ in this abstract, where $s$ is a complex variable and $a$ is a parameter in the domain that depends on the type. In the easiest case we take $a\in\R,$ and one of our main results is that $Z(-m,a)$ is a constant times $E_m(a)$ for $0le m\in\Z,$ where $E_m$ is the generalized Euler polynomial of degree $n.$ In another case, $a$ is a positive definite real symmetric matrix of size $n,$ and $Z(-m,a)$ for $0le m\in\Z$ is a polynomial function of the entries of $a$ of degree $le mn.$ We will also define $Z$ with a totally real number field as the base field, and will show that $Z(-m,a)\in\Q$ in a typical case.
Classification : 11B68, 11M06, 30B50, 33E05
@article{DOCMA_2010__15__a21,
     author = {Shimura, Goro},
     title = {The critical values of generalizations of the {Hurwitz} zeta function},
     journal = {Documenta mathematica},
     pages = {489--506},
     publisher = {mathdoc},
     volume = {15},
     year = {2010},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/DOCMA_2010__15__a21/}
}
TY  - JOUR
AU  - Shimura, Goro
TI  - The critical values of generalizations of the Hurwitz zeta function
JO  - Documenta mathematica
PY  - 2010
SP  - 489
EP  - 506
VL  - 15
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/DOCMA_2010__15__a21/
LA  - en
ID  - DOCMA_2010__15__a21
ER  - 
%0 Journal Article
%A Shimura, Goro
%T The critical values of generalizations of the Hurwitz zeta function
%J Documenta mathematica
%D 2010
%P 489-506
%V 15
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/DOCMA_2010__15__a21/
%G en
%F DOCMA_2010__15__a21
Shimura, Goro. The critical values of generalizations of the Hurwitz zeta function. Documenta mathematica, Tome 15 (2010), pp. 489-506. https://geodesic-test.mathdoc.fr/item/DOCMA_2010__15__a21/