Locally well generated homotopy categories of complexes
Documenta mathematica, Tome 15 (2010), pp. 507-525.

Voir la notice de l'article dans Electronic Library of Mathematics

Summary: We show that the homotopy category of complexes $\mathbf{K}(\mathcal{B})$ over any finitely accessible additive category $\mathcal{B}$ is locally well generated. That is, any localizing subcategory $\mathcal{L}$ in $\mathbf{K}(\mathcal{B})$ which is generated by a set is well generated in the sense of Neeman. We also show that $\mathbf{K}(\mathcal{B})$ itself being well generated is equivalent to $\mathcal{B}$ being pure semisimple, a concept which naturally generalizes right pure semisimplicity of a ring $R$ for $\mathcal{B}= \textrm{Mod-}R$.
Classification : 18G35, 18E30, 18E35, 16D90
Mots-clés : compactly and well generated triangulated categories, complexes, pure semisimplicity
@article{DOCMA_2010__15__a20,
     author = {Stovicek, Jan},
     title = {Locally well generated homotopy categories of complexes},
     journal = {Documenta mathematica},
     pages = {507--525},
     publisher = {mathdoc},
     volume = {15},
     year = {2010},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/DOCMA_2010__15__a20/}
}
TY  - JOUR
AU  - Stovicek, Jan
TI  - Locally well generated homotopy categories of complexes
JO  - Documenta mathematica
PY  - 2010
SP  - 507
EP  - 525
VL  - 15
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/DOCMA_2010__15__a20/
LA  - en
ID  - DOCMA_2010__15__a20
ER  - 
%0 Journal Article
%A Stovicek, Jan
%T Locally well generated homotopy categories of complexes
%J Documenta mathematica
%D 2010
%P 507-525
%V 15
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/DOCMA_2010__15__a20/
%G en
%F DOCMA_2010__15__a20
Stovicek, Jan. Locally well generated homotopy categories of complexes. Documenta mathematica, Tome 15 (2010), pp. 507-525. https://geodesic-test.mathdoc.fr/item/DOCMA_2010__15__a20/