Dimensions of affine Deligne-Lusztig varieties in affine flag varieties.
Documenta mathematica, Tome 15 (2010), pp. 1009-1028.
Voir la notice de l'article dans Electronic Library of Mathematics
Summary: Affine Deligne-Lusztig varieties are analogs of Deligne-Lusztig varieties in the context of an affine root system. We prove a conjecture stated in the paper [5] by Haines, Kottwitz, Reuman, and the first named author, about the question which affine Deligne-Lusztig varieties (for a split group and a basic $\sigma$-conjugacy class) in the Iwahori case are non-empty. If the underlying algebraic group is a classical group and the chosen basic $\sigma$-conjugacy class is the class of $b=1$, we also prove the dimension formula predicted in op. cit. in almost all cases.
Classification :
20F55, 20G25
Mots-clés : affine Deligne-Lusztig varieties
Mots-clés : affine Deligne-Lusztig varieties
@article{DOCMA_2010__15__a2, author = {G\"ortz, Ulrich and He, Xuhua}, title = {Dimensions of affine {Deligne-Lusztig} varieties in affine flag varieties.}, journal = {Documenta mathematica}, pages = {1009--1028}, publisher = {mathdoc}, volume = {15}, year = {2010}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/DOCMA_2010__15__a2/} }
Görtz, Ulrich; He, Xuhua. Dimensions of affine Deligne-Lusztig varieties in affine flag varieties.. Documenta mathematica, Tome 15 (2010), pp. 1009-1028. https://geodesic-test.mathdoc.fr/item/DOCMA_2010__15__a2/