Semigroup properties for the second fundamental form
Documenta mathematica, Tome 15 (2010), pp. 527-543.

Voir la notice de l'article dans Electronic Library of Mathematics

Summary: Let $M$ be a compact Riemannian manifold with boundary $\partial M$ and $L= \delta+Z$ for a $C^1$-vector field $Z$ on $M$. Several equivalent statements, including the gradient and Poincaré/log-Sobolev type inequalities of the Neumann semigroup generated by $L$, are presented for lower bound conditions on the curvature of $L$ and the second fundamental form of $\partial M$. The main result not only generalizes the corresponding known ones on manifolds without boundary, but also clarifies the role of the second fundamental form in the analysis of the Neumann semigroup. Moreover, the Lévy-Gromov isoperimetric inequality is also studied on manifolds with boundary.
Classification : 60J60, 58G32
Mots-clés : second fundamental form, gradient estimate, Neumann semigroup, log-Sobolev inequality, Poincaré inequality
@article{DOCMA_2010__15__a19,
     author = {Wang, Feng-Yu},
     title = {Semigroup properties for the second fundamental form},
     journal = {Documenta mathematica},
     pages = {527--543},
     publisher = {mathdoc},
     volume = {15},
     year = {2010},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/DOCMA_2010__15__a19/}
}
TY  - JOUR
AU  - Wang, Feng-Yu
TI  - Semigroup properties for the second fundamental form
JO  - Documenta mathematica
PY  - 2010
SP  - 527
EP  - 543
VL  - 15
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/DOCMA_2010__15__a19/
LA  - en
ID  - DOCMA_2010__15__a19
ER  - 
%0 Journal Article
%A Wang, Feng-Yu
%T Semigroup properties for the second fundamental form
%J Documenta mathematica
%D 2010
%P 527-543
%V 15
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/DOCMA_2010__15__a19/
%G en
%F DOCMA_2010__15__a19
Wang, Feng-Yu. Semigroup properties for the second fundamental form. Documenta mathematica, Tome 15 (2010), pp. 527-543. https://geodesic-test.mathdoc.fr/item/DOCMA_2010__15__a19/