Hankel operators and the Dixmier trace on strictly pseudoconvex domains
Documenta mathematica, Tome 15 (2010), pp. 601-622.
Voir la notice de l'article dans Electronic Library of Mathematics
Summary: Generalizing earlier results for the disc and the ball, we give a formula for the Dixmier trace of the product of $2n$ Hankel operators on Bergman spaces of strictly pseudoconvex domains in $\bold C^n$. The answer turns out to involve the dual Levi form evaluated on boundary derivatives of the symbols. Our main tool is the theory of generalized Toeplitz operators due to Boutet de Monvel and Guillemin.
Classification :
32A36, 47B35, 47B06, 32W25
Mots-clés : Dixmier trace, Toeplitz operator, Hankel operator, Bergman space, Hardy space, strictly pseudoconvex domain, pseudodifferential operator, Levi form
Mots-clés : Dixmier trace, Toeplitz operator, Hankel operator, Bergman space, Hardy space, strictly pseudoconvex domain, pseudodifferential operator, Levi form
@article{DOCMA_2010__15__a16, author = {Englis, Miroslav}, title = {Hankel operators and the {Dixmier} trace on strictly pseudoconvex domains}, journal = {Documenta mathematica}, pages = {601--622}, publisher = {mathdoc}, volume = {15}, year = {2010}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/DOCMA_2010__15__a16/} }
Englis, Miroslav. Hankel operators and the Dixmier trace on strictly pseudoconvex domains. Documenta mathematica, Tome 15 (2010), pp. 601-622. https://geodesic-test.mathdoc.fr/item/DOCMA_2010__15__a16/