An inverse $K$-theory functor
Documenta mathematica, Tome 15 (2010), pp. 765-791.
Voir la notice de l'article dans Electronic Library of Mathematics
Summary: Thomason showed that the $K$-theory of symmetric monoidal categories models all connective spectra. This paper describes a new construction of a permutative category from a $\Gamma$-space, which is then used to re-prove Thomason's theorem and a non-completed variant.
Classification :
19D23, 55P47, 18D10, 55P42
Mots-clés : gamma space, permutative category, connective spectrum
Mots-clés : gamma space, permutative category, connective spectrum
@article{DOCMA_2010__15__a11, author = {Mandell, Michael A.}, title = {An inverse $K$-theory functor}, journal = {Documenta mathematica}, pages = {765--791}, publisher = {mathdoc}, volume = {15}, year = {2010}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/DOCMA_2010__15__a11/} }
Mandell, Michael A. An inverse $K$-theory functor. Documenta mathematica, Tome 15 (2010), pp. 765-791. https://geodesic-test.mathdoc.fr/item/DOCMA_2010__15__a11/