An inverse $K$-theory functor
Documenta mathematica, Tome 15 (2010), pp. 765-791.

Voir la notice de l'article dans Electronic Library of Mathematics

Summary: Thomason showed that the $K$-theory of symmetric monoidal categories models all connective spectra. This paper describes a new construction of a permutative category from a $\Gamma$-space, which is then used to re-prove Thomason's theorem and a non-completed variant.
Classification : 19D23, 55P47, 18D10, 55P42
Mots-clés : gamma space, permutative category, connective spectrum
@article{DOCMA_2010__15__a11,
     author = {Mandell, Michael A.},
     title = {An inverse $K$-theory functor},
     journal = {Documenta mathematica},
     pages = {765--791},
     publisher = {mathdoc},
     volume = {15},
     year = {2010},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/DOCMA_2010__15__a11/}
}
TY  - JOUR
AU  - Mandell, Michael A.
TI  - An inverse $K$-theory functor
JO  - Documenta mathematica
PY  - 2010
SP  - 765
EP  - 791
VL  - 15
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/DOCMA_2010__15__a11/
LA  - en
ID  - DOCMA_2010__15__a11
ER  - 
%0 Journal Article
%A Mandell, Michael A.
%T An inverse $K$-theory functor
%J Documenta mathematica
%D 2010
%P 765-791
%V 15
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/DOCMA_2010__15__a11/
%G en
%F DOCMA_2010__15__a11
Mandell, Michael A. An inverse $K$-theory functor. Documenta mathematica, Tome 15 (2010), pp. 765-791. https://geodesic-test.mathdoc.fr/item/DOCMA_2010__15__a11/