Special subvarieties arising from families of cyclic covers of the projective line
Documenta mathematica, Tome 15 (2010), pp. 793-819.

Voir la notice de l'article dans Electronic Library of Mathematics

Summary: We consider families of cyclic covers of $\Bbb P^1$, where we fix the covering group and the local monodromies and we vary the branch points. We prove that there are precisely twenty such families that give rise to a special subvariety in the moduli space of abelian varieties. Our proof uses techniques in mixed characteristics due to Dwork and Ogus.
Classification : 11G15, 14H40, 14G35
Mots-clés : special subvarieties, Jacobians, complex multiplication
@article{DOCMA_2010__15__a10,
     author = {Moonen, Ben},
     title = {Special subvarieties arising from families of cyclic covers of the projective line},
     journal = {Documenta mathematica},
     pages = {793--819},
     publisher = {mathdoc},
     volume = {15},
     year = {2010},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/DOCMA_2010__15__a10/}
}
TY  - JOUR
AU  - Moonen, Ben
TI  - Special subvarieties arising from families of cyclic covers of the projective line
JO  - Documenta mathematica
PY  - 2010
SP  - 793
EP  - 819
VL  - 15
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/DOCMA_2010__15__a10/
LA  - en
ID  - DOCMA_2010__15__a10
ER  - 
%0 Journal Article
%A Moonen, Ben
%T Special subvarieties arising from families of cyclic covers of the projective line
%J Documenta mathematica
%D 2010
%P 793-819
%V 15
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/DOCMA_2010__15__a10/
%G en
%F DOCMA_2010__15__a10
Moonen, Ben. Special subvarieties arising from families of cyclic covers of the projective line. Documenta mathematica, Tome 15 (2010), pp. 793-819. https://geodesic-test.mathdoc.fr/item/DOCMA_2010__15__a10/